EC MACHINE DIRECTIVE COMPLANCE DECLARATION

(DIREC TIVE 89/392 EEC, APPENDIX II, PARTB)

Manufacturer: FAAC S.p.A.
Address: Via Benini, 1
40069-Zola Predosa
BOLOGNA - ITALY
Hereby declares that the 961 B-E automation system

- isintended to be incorporated into machinery, orto be a ssembled with other machinery to constitute machinery in compliance with the requirements of Direc tive 89/392 EEC , a nd subsequent a mend ments 91/368 EEC, 93/44 EEC and 93/68 EEC;
- complieswith the essentia Isa fety requirementsin the following EEC Directives:

73/23 EEC a nd subsequent a mendment 93/68 EEC.
89/336 EEC a nd subsequent a mendments 92/31 EEC and 93/68 EEC .
and furthermore declares that unit must not be put into service until the machinery into which it is incorporated or of which it is a component has been identified and declared to be in conformity with the provisions of Direc tive 89/392 EEC a nd subsequenta mendmentsenacted by the national implementing legislation.

Bologna, 1 J anuary 1997

Managing
Dire 4 tor
A.

IMPORIANTNOTICE FOR THE INSTAUER

GENERALSAFETY REGULATIONS

1) WARNING! FAAC strongly recommends to follow these instructions literally for the safety of persons. Improper installation or misuse of the product will cause very serious damages to persons.
2) Packaging material (plastic, polystyrene etc.) is a potential hazard and must be kept out of reach of children.
3) Read the instructionscarefully before installing the product.
4) Keep these instructions for future reference.
5) This product hasbeen designed and manufac tured only forthe use stated in this manual. Any otheruse not expressly set forth will affect the reliability of the product and/orcould be source of hazard.
6) FAAC S.p.A. cannot be held responsible forany da mage caused by improper use ordifferent from the use for which the a utomation system is destined to.
7) Do not use this device in areassubject to explosion: the presence of fla mmable gasor fumes is a serious hazard.
8) Mechanic al constructive elements must comply with CEN pr EN 12650-1 and CEN pr EN 12650-2 standards.

Countriesoutside the EC shall follow the regulationsabove besidestheirnational no mative referencesin orderto offer the utmost safety.
9) FAAC cannot be held responsible forfailure to observe technical standards in the construction of gates and doors, or for any deformation of the gates which may occurduring use.
10) Before carying out any operations, tum off the system's ma in switch.
11) An omnipowerswitch shall be provided forthe installation with an opening distance of the contactsof 3 mm ormore. Altematively, use a 6A themomagnetic breaker with multi-pole switc hing.
12) Ensure that there is a differential switch up-line of the electric al system, with a trip threshold of 0.03A.
13) Check that the earthing plant is in perfect condition and connect it to the metallic parts. Also earth the yellow/green wire of the operator.
14) The automation is fitted with an anti-crush safety system that is a torque control device. In any case, further safety devices shall be installed.
15) The safety devices(e.g. photocells, safety edges, etc.) protect areaswherethere isa mec hanic almovement hazard, e.g. c rushing, entrapment and cutting.
16) Each installation must be fitted with at least one waming plate suitably fixed to the gate, besides the safety devices as per point 15. above.
17) FAAC cannot be held responsible regarding safety and correct functioning of the automation in the event that parts other than FAAC original parts are used.
18) Use only FAAC original spare parts for maintena nce operations.
19) Do not camy out any modific ations to automation components.
20) The installermust supply all information regarding ma nual operation of the system in the event of an emergency and provide the end-user with the leaflet attached to the product.
21) Keep out of persons when the product is in operation.
22) Keep out of reach of children the remote radio controls and any control devices. The a utomation could be operated unintentionally.
23) The end-usermust a vo id a ny attempt to repa iroradjust the a utomation personally. These operationsmust be carried out exclusively by qualified personnel.
24) What is not explic itly stated in these instructions is not permitted.

The 961 B-E automatic unit forswing doors is a one-piece unit consisting of an electromechanical device that allows door opening to be controlled by means of a driving arm. The door is re-closed by a spring system.
The operatorcan be installed eitheron the lintel oron the door structure itself.
The stainless steel protective casing houses the electronic control unit used to program and control the operation of the system.
In the event of a powerfailure the door can be pushed (or pulled) open ma nually.

1. DESC RIPIION AND TECHNICAL CHARAC TERISIICS

Fig. 1
(1) Cable hole
(7) Drive system
(2) Support profile
(8) $D C$ motor
(3) 960 MP electronic control unit
(9) $961 \mathrm{~B}-$ - programming unit
(4) Position monitoring microswitch
(10) Closing spring
(5) Spring loading adjustment screw
(11) Protective casing
(6) Transmission shaft
(12) Operating function switch
(13) End cover (2)

Table 1: Technic al spec ifications of 961 B-E Operator

Power supply	$230 \mathrm{Vac}(+6-10 \%)-50$ (60) Hz
Absorbed power	100 W
Curent drawn	0.5 A
Electric motor	24 Vdc with encoder
Dimensions	$530 \times 100 \times 104$ (length \times height \times depth)
Weight	10 kg
Ambient temperature	$-15+70^{\circ} \mathrm{C}$
Housing protection	IP 23
Dimensions and max. weight of leaf	see Table 3 (section 1.1)
Duty cycle	continuous
Operation in event of power failure	Manual push/pull opening Spring closure
Configuration of driving ams - pushing 126-250	- pushing articulated am (version for jamb depth 0-125 mm) articulated am - (version for jamb depth pulling articulated arm • sliding am
Anti-crushing device	standard
Opening angle	70-95
Opening time	3.5-10 s (adjustable)
Closing time	6-13 s (adjustable)

Table 2: Technical specifications of 960MP Electronic Control Unit + 961 B-E Programming unit

Power supply	$230 \mathrm{Vac}(+6-10 \%)-50$ (60) Hz
Accessories power supply	$24 \mathrm{Vdc} / 500 \mathrm{~mA} \mathrm{max}$.
Electric lock power supply (N.O./ N.C.)	$24 \mathrm{Vdc} / 0.5 \mathrm{~A}$ max.
Standard operating functions (switch)	Open / Automatic / Manual (Night)
Adjustable functions (trimmer)	Opening speed - Closing speed Pulling force - Pause time
Selectable functions (microswitches) Standa	Overclosing stroke non-standard initia lisation procedure and Go - Function switch (pos. " 0 ")
Teminal strip outputs (N.O./N.C. Presence "Interlo	Door open/closed signal Malfunction alam signal24 Vdc electric lock power supply -24 Vdc accessories power supply nnal (gong) - PC connection signals " signals - "Double leaf door" signals
Terminal strip inputs STOP	Function switch/CODIS (optional) Intemal / extemal / emergency / fety device / CLOSURE safety device

1.1 APPUCATION LMITS

Important To ensure correct application of the FAAC 961 B-E unit the weight of the door must not exceed the value given in Table 3 corresponding to its length.
The maximum length of the leaf is 1400 mm .
The values of maximum weight vary according to the driving a m used.
Foreach d riving a m there is also a differentma ximum va lue for the depth of the doomost (Table 4) beyond which it is not possible to install the system correctly.

Table 3: Applic ation limits of 961 B-E automatic unit

Length of leaf $\mathbf{(m m)}$	Max. weight of leaf $\mathbf{(k g)}$ Pushing articulated arm	Max. weight of leaf $\mathbf{(k g)}$ Pulling articulated am	Max. weight of leaf $\mathbf{(k g)}$ Sliding arm
700	367	286	-
750	320	249	-
800	281	219	-
850	249	194	194
900	222	173	173
950	199	155	155
1000	180	140	140
1050	163	127	127
1100	149	116	116
1150	136	106	106
1200	125	97	97
1250	115	90	90
1300	107	83	83
1350	99	77	77
1400	92	71	71

Table 4: Max. depth of doomost

	Pushing articulated am (Var. 01)	Pushing articulated am (Var. 02)	Pulling articulated am	Sliding am
	$0-125$	$126-250$	$0-160$	$0-160$

2. ELEC TRICAL SEIUP (fig. 2a Standard system)

(1) 961 B-E operator
(2) Microwave radar/ Passive infrared sensor
(3) TZOE extemal key-switch (KEY command)
(4) Emergency Closing/Opening pushbutton
(5) CODIS programming unit (optional)
(6) CODIS inhibition switch (optional)
(7) 24 Vdc electric lock
(8) Junction box

If the operator is installed on the door, make the electrical connections using a junction box and suitable commercially a vailable pipes/unions (fig. 2b).
N.B.: 1) For installation of electrical cables use suitable rigid or flexible piping.
2) Alwayskeep the low voltage ac cessory connection cablesseparate from the 230 V powercables. Use separate sheaths to a void a ny interference.

3. INSTAШATION

3.1 PREUMINARY CHECKS

To ensure correct operation of the a utomatic unit the structure of the existing door must meet the following requirements:

- length and weight as specified in Table 3 (section 1.1);
- max. doorpost depth as specified in Table 4;
- robust and rigid structure of the leaf;
- good condition of the existing hinges;
- smooth, uniform movement of the leaf with no abnormal friction at any point of its travel;
- "neutral" position of the doorduring itsentire travel. If the door tends to close or open, check the alignment of the hinges.
- Presence of mechanical end stops.

3.2 MOUNTING THE OPERATOR

1) Remove the protective casing (fig. 3) and the end covers (fig. 4) from the operator.
Waming: Before removing the end cover with the function switch, remove the connector joining the switch to the 960MP electronic control unit.
2) As regards the mounting position of the operator (on the lintel or on the door) and the type of a m to use (pushing, pulling orsliding), referto the relevant mounting table and drill the holes required to mount the operator and the pulling arm.
N.B.: The two intermediate operator fixing holes are not in a central position (see mounting tables). The holes are offset in order to ensure that the operator is mounted with the correct direction of rotation of the mechanism.
The mounting tables are the following:
Table A: UNIEL MOUNTING (PUSHING ARIICULATED ARM)
Outward opening
Table B: DOOR MOUNTING (PUSHING ARIICULATED ARM) Inward opening
Table C: UNTEL MOUNTING (PUШNG ARIICULATED ARM) Inward opening
Table D: UNIEL MOUNTING (SUDING ARM) Inward opening
3) Mount the operator using the six M6 screws and washers provided.

Waming:

- The structure of the lintel (or the door) at the operator mounting position must not exhibit any significant deformation.
- The operator must be mounted parallel to the floor.
N.B.: If the sliding arm is to be used, the driving arm must be mounted before the operator is fixed on the lintel (see section 3.3.3.).

3.3 MOUNTING THE DRIVING ARMS

3.3.1 MOUNTING THE PUSHING ARTICULATED ARM (fig. 5)

1) Close the door.
2) Free arms (1) a nd (2) by pulling apart the coupling (3) manually as shown in fig. 5.
3) Fit arm (1) on the operator transmission shaft by means of the extension and the screw (4) provided (fig. 5). The arm must be mounted perpendicular to the closed door.
N.B.: If a greaterdistance between the operatorand the arm is required, use the higherextensions a vaila ble as a ccesso ries (see Table A/B).
4) Mount plate (5) of arm (2) on the doororthe lintel using the two M6 screws and the washers provided (fig. 5). The installation distances a re given in Table A/B.
5) Sla c ken the fixing sc rew (6) a nd a ssemble the two a msby mea ns of coupling (3) (fig. 5).
6) Tum arm (1) until arm (2) is perpendicular to the closed door or the lintel as shown in fig. 5 (a-b), sliding the spacer (7) a long a m (2).
7) Tighten the fixing screw (6) between the two ams. The length of arm (2) is given in the relevant mounting tables. If necessa ry, cut off the section of the a mextending beyond the a rtic ulation and then coverthe end susing the capsprovided (fig. 5).
8) Check manually that the door is free to open and close fully a nd that it comesto rest aga inst the mechanic al end stops. If the doordoes not c lose correctly, a djust the retum spring as described in section 10.
Important The two driving arms must never touch.
N.B.: For 90° opening it isnot nec essa ry to install the mechanical opening stop (mic roswitc h no. 2 in OFF position - see section 5).

3.3.2 MOUNTING THE PUШNG ARTICULATED ARM (fig. 6)

1) Close the door.
2) Free arms (1) and (2) by pulling apart the coupling (3) manually as shown in fig. 6.
3) Fit a m (1) on the operator tra nsmission shaft by means of the extension and the screw (5) provided (fig. 6). The a rm must be mounted parallel to the closed door.
N.B.: If a greaterdistance between the operatora nd the amm is required, use the higher extensions a va ila ble as a c cesso ries (see Table C).
4) Mount plate (6) of a m (4) on the door using the two M6 screws a nd the washers provided (fig. 6). The installation dista nces a re given in Ta ble C.
5) Slacken the screws(7) a nd slide the atta chment (8) a long arm (4) so as to position it at dista nce D given in Table C. Having done this, tighten screws (7).
6) Slacken screw (9) a nd a ssemble the two a ms using the coupling (3) (fig. 6).
7) Tum arm (1) a sshown in fig. 6(a) until it reachesa distance of 83 mm from the lintel. Ha ving done this, tighten the fixing screw (9) between the two ams. If necessary, cut off the section of the a m extending beyond the artic ulation and then cover the ends using the caps provided (fig. 6).
8) Check manually that the door is free to open and close fully a nd tha t it comesto rest a ga inst the mechanic al end stops. If the doordoes not c lose correctly, a djust the retum spring as desc ribed in section 10.
Important The driving a ms must never touch.

3.3.3 MOUNTING THE SUDING ARM (fig. 7)

1) Mountarm (1) on the operatortransmission shaftbymeans of the extension and the screw (2) provided (fig. 7). The arm must be fitted pointing 45° outwards as shown in fig. 7(a).
N.B.: If a largerdistance isrequired between the operatorand the arm use the higher extensions available as accessories (see Table D).
Waming: Mount arm (1) on the transmission shaft before fitting

ENGUSH

the operator on the lintel (fig. 7).
2) Insert the roller (3) inside the slid ing guide (4) (fig. 7).
3) Pull arm (1) inwards manually as shown in fig. 7(b) and secure the sliding guide (4) by means of two M6screwson the closed door as shown in Table D.
4) Check manually that the door is free to open and close fully a nd comesto restagainst the mechanicalend stops. If the doordoesnot close correctly, adjust the retum spring as described in section 10.

4. START-UP

1) Make the electrical connections to the 960 MP electronic control unit as described in section 6 .
To ga in ac cess to the control unit, passthe cablesthrough the special conduit (fig. 1 - ref. 1) as shown in fig. 8.
2) Fitthe two end coversa nd connectup the function switch. The end coverwith the switc h may be fitted on the right or the left. Forcable routing refer to fig. 8.
3) Tum the operating function switch (fig. 1 - ref. 12) to position I (AUTOMATIC logic).
4) Check that the programming unit mic roswitches (fig. 10) are all in the OFF position.

Important When mounting the "pulling artic ulated" or "slid ing" a ms orforopening angles greater than 90°, tum microswitch
no. 2 to ON before connecting power to the system.
5) Close the door.
6) Powerup the operator. Powering issignalled by an acoustic signal from a buzzer.
7) Check that the 5V LED on the programming unit (fig. 9) lights up.
8) At the end of the initialisa tion procedure, check the status of the signalling LEDson the programming unit asshown in Table 5.
Table 5: Operation of status LEDs

LID	ON	OFF
5V	logic powered	logic not powered
OK	command active	command inactive
YES	safety devices active	safety devices inactive

N.B.: The statusof the LEDs with the doorclosed at rest is shown in bold type.

4.1. INITIAUSATION PROCEDURE

As soon as the system is powered up, it runs an initia lisation procedure which includes setting the following parameters:

- measuring the mass of the door,
- determining the end stop positions;
- determining the point at which the STOP safety device intervenes (see section 6).
The door opens at low speed, then closes half way before switc hing back to opening.
Subsequent closure is performed by the retum spring.
The initialisation procedure is indicated by an intermittent acoustic signal (frequency 1 sec) emitted by a buzzer on the programming unit (table 6).
The process may be inhibited due to:
- function switch in the 0 (MANUAL) position;
- incorrect connection of the accessories (electric lock, control/safety devices);
- incorrectpositioning of the programming unit mic roswitches.
N.B.: To repeat the initia lisation proc edure hold down the RESET button (fig. 11 - ref. 4) for more than 4 sec onds.

5. 961 B-E PROGRAMMING UNIT

5.1 LAYOUTAND DESCRIPIION

(1) Signalling LEDs (see Table 5)
with 960 MP electronic control unit
(2) Signalling buzer (see section 5.4.)
(3) Adjusting trimmer
(4) Programming microswitches
(6) Encoder
(5) Connector (16 pole) for connection

5.2. SETING THE ADJ USTING TRIMMERS

The programming unit features trimmers (fig. 9 - ref. 3) which regulate the following parameters:
Trimmer Vo to set the opening speed.
Setting $30 \div 100 \%$ of the initia lisation value.
Standard setting 50\%.
Timmer Vc to set the closing speed.
Setting $30 \div 100 \%$ of the initia lisation value.
Standard setting 50\%.
N.B.: The speed initia lisation valuesdepend on the dimensions and the mass of the door.
Trimmer To to set the pause time (AUTOMATIC logic).
Setting from 1 to 30 seconds.
Standard setting 3 seconds.
Trimmer Fm to set the pulling force of the operator.
Setting $60 \div 100 \%$ of maximum value.
Standard setting 100%.
Tum the trimmers clockwise to increase the values of the settings.
Tum the trimmers anticlockwise to reduce the values of the settings.

Fig. 9

5.3. PROGRAMMING THE MICROSWTCHES (fig. 10)

The programming unit has a series of microswitches which allow the functions shown in fig. 10 to be selected.
The system is supplied with all the microswitches in the OFF position.

5.3.1. OVERCLOSING STROKE

Thisfunction enablesthe closed position force to be inc reased by further loading the transmission system after the door has reached the mechanical closure end stop.
It is advisable to use this function if the door is subject to pressure caused by atmospheric agents (e.g. gusts of wind) when closed.

5.3.2. INITIAUSATION PROCEDURE

If pulling artic ulated a msor sliding armsare mounted or in the event of opening anglesof more than 90°, the NON-STANDARD process must be selected. In thiscase an extemalmechanic al stop must always be provided.

5.3.3. FUNCTION SWTCH ("O" POSITION)

Thisfunction allowsthe operating function to be selected with the switch in the " 0 " position (see section 7).

5.3.4. PUSH AND GO

When activated, thisfunction enablesthe opening command to be given by pushing the closed doormanually. It is suffic ient to give the dooran initial push in the opening direction.

5.4. SIGNAШNG BUZIER

The programming unit incorporates a buzzer which emits sequences of acoustic signals corresponding to different statuses of the system. The statuses that have occurred and their identification sequence can be seen in Table 6.

Table 6: Acoustic signals
$\left.\begin{array}{|lll|}\hline \text { STATUS SIGNAUED } & \text { ACOUSTIC SEQUENCE } \\ \hline \begin{array}{l}\text { Connection to mains } \\ \text { power supply }\end{array} & \prod_{\text {Sound }}^{\text {Souse }}\end{array}\right)$

The indication of error A does not inhibit the operation of the a utomation unit. The ind ic a tion of errorB inhibitsthe operation of the a utomation unit until the fault is eliminated.
Table 8 (paragraph 8.4) contains a list of the malfunction conditionsindic ated bythe system. To identify the fault, connect the CODIS extemal programming unit (optional).

6. 960 MP ELEC TRONIC CONTROL UNIT

Waming: Always disconnect the electric powersupply before carrying out any work on the control unit (connection, ma intenance).

(1) Fuse FI $1 \mathrm{AT} / 230 \mathrm{Vac}-5 \times 20$
(2) Temminal strip $\mathbf{X 1}(230 \mathrm{~V})$ - fig. 12
(3) Low voltage teminal strip $\mathbf{X 2}$ / X4

Description of the terminal strip

1. -2.-3. Connection of function switch (fig. 1-ref. 12) as shown in fig. 13.
Connection of CODIS programming unit (optional) as shown in fig. 14.
Use a $2 \times 0.5 \mathrm{~mm}^{2}$ screened cable (buscommunication)
forthe connection. The screening must be fixed undemeath the special screws (fig. 14 - ref. 1).
Important The maximum permissible length of the connection cable is 50 m .
To inhibit operation of the CODIS, intemupt the jumper between terminals 3 and 4 a nd installa switch (fig. 14-ref. 2).
Waming:If the CODISisused on a continuousbasis, function no. 7 must be activated at level III (see section 8).
Activation of input 3 (fig. 14) enables the NIG HT or ONEWAY operating functions to be given priority over the function selected on the CODIS unit. To select the prionity function, program the CODIS suitably at level III (function no. 2 - see section 8.3). The input can be activated by means of a timer.
2. Electric lock - Common
3. Electric lock- N.C. contact(max. capacity $0.5 \mathrm{~A} / 24 \mathrm{~V}$) (fig. 15). The output is suitable for commanding a magnetic closure system. If no power is supplied, the electric lock is nota ctive. In the NIG HTfunction the elec tric lockispowered a nd hence active. In the event of an opening command (intemal command orEMERG ENC Y OPENING), the power supply to the electric lockistemporarily cutoff to allow the door to be opened.
4. Electric lock-N.O. contact(max. capacity $0.5 \mathrm{~A} / 24 \mathrm{~V}$) (fig. 16). If no power is supplied the electric lock is active and therefore guarantees-CLOSING mechanical locking. In the NIGHT function the electric lock is active even if no power is supplied. In the event of an opening command (intema Icommand orEMERG ENCYOPENING), the elec tric lock is temporarily powered to enable the door to be opened. In this case a reverse stroke command is also

Fig. 12
Fig. 13

(2)

Fig. 14
$\mathrm{L}=$ screened cable $2 \times 0.5 \mathrm{~mm} 2 ; 50 \mathrm{~m}$ max.

9 max. 0,5A/24 Vdc

	$\begin{aligned} & 0 \\ & \text { Z } \\ & \text { Z } \\ & \text { O} \\ & \underset{\sim}{4} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \underset{\sim}{\text { + }}+ \end{aligned}$	-
4	5	6	7	8

Fig. 15

Fig. 17

Fig. 16

Fig. 18

Fig. 19/a

Fig. 20
Fig. 21
TERM. 14

Fig. 22
Fig. 23
given to enable the mechanical release of the system.
7. Accessories power supply (+24 Vdc)
8. Accessories power supply (0 Vdc)
9. Intemal command: any control device (pushbutton, photocell, sensor, etc.) which, by closing a contact, can command an opening cycle of the system from inside.
10. Extemal command: any control device (pushbutton, photocell, sensor, etc.) which, by closing a contact, can command an opening cycle of the system from outside. Fig. 17 shows the control device connection. To install more tha n one internal/extemal control device, connect the N.O. contacts in parallel.
Connecting mic rowave radar/passive infrared sensors. In the conventional configurations the control units are microwave radar and/or passive infrared sensors. To connect the FAAC sensors/radarunits equipped with a 5pole electricalcable, referto fig. 18.
11. Emergency control(fig. 19/a): a ny controldevice (no mally a pushbutton) which, by opening a contact, commands an emergency closure of the system. Alternatively this input can be used to command emergency opening by programming the system in a suitable manner using the CODIS programming unit (optional).
To install more than one emergency control device, connect the N.C. contacts in series.
N.B.: If emergency control devices are not connected, jumper inputs $\mathbf{1 1}$ and $\mathbf{1 5}$.
Activating function no. 6 at CODIS programming level III enablesthe emergenc ycontrol to be activated byclosing a N.O. contact.
In this case, in order to install more than one emergency control device, connect the N.O. contacts in parallel.
12. STOP safety control (fig. 19/a): a ny device (safety sensor, photocell, etc.) which, by opening a contact, hasa safety effect on the operating cycle. In particular, this safety device interrupts the opening/closing movement of the door.
When the safety device is disengaged, the door resumes its opening/closing movement and continues to the end of the cycle.
To install more than one STOP safety device, connect the N.C. contacts in series.
N.B.: If STO P safety de vic es a re not installed, jumper inputs 12 and 15.
13. CLOSURE safety command (fig. 19/a): a ny device (safety sensor, photocell, etc.) which, by opening a contact, has a safety function on the closing movement of the door.
The safety device causes an immediate reversal of the closing movement of the door, but has no effect on the opening movement of the door.
To install more than one CLOSURE safety device, connect the N.C. contacts in series.
N.B.:IfCLOSUREsa fety devicesare not connected, jumper inputs 13 and 15.
Connection of MINISWITCH photocells
The MINISWITC H photocellsc a n be used asa safety device.

For connection, see figure 19/b.
14. Accessories power supply ($+24 \mathrm{Vdc} \mathrm{)}$
15. - 16. Accessories power supply (0 Vdc)
17. Status signal output Common (fig. 20)
18. Dooropen signal output(max. contact ca pacity 0.5 A / 24 Vdc) (fig. 20)
19. Doorclosed signal output (max. contact capacity $0.5 \mathrm{~A} /$ $24 \mathrm{Vdc})$ (fig. 20).
Teminals $17 / 18$ a nd $17 / 19$ can be used to power two 24 Vdc (max. 0.5 A) warning lampsto provide dooropen and door closed signals respectively (fig. 20).
20. - 21. Alarm signal output(max. contactc a pacity $0.5 \mathrm{~A} / 24$ Vdc).
Terminals 20 and 21 can be used to powera 24 Vdc (max. 0.5 A) waming lamp for remote signalling of an alam condition (fig. 21).
The operatorsignalsa malfunction by mea nsofan acoustic alam from a buzer (see Table 6).
22. "KEY" opening command (fig. 22): any device which, by closing a contact for more than 3 seconds, commands dooropening in any operating function selected.
To install more than one "KEY" command, connect the N.O. contacts in parallel.
23. Outputfor "DOUBLE LEAF" applic ation (fig. 22): see section 9.2
24. OutputforGONG acoustic signal/ Outputfor "INTERLOCK" application (fig. 22):
When the CLOSURE safety device comesinto operation, it activates the output between termina ls 14 and 24 forone second at intervalsof 0.5 seconds. The output issuitable for controlling an a coustic signal(GONG). The maximum load is 300 mA (fig. 22).
In the event of "INTERLOCK" operation, it is necessary to activate function no. 3 at CODISlevel Illa and use outputs 24 and 25 for the connection between the two operators (see section 9.1).
25. 0 Vdc
26. -27.- 28. PC connection: These outp uts allow forinterfa cing with a PC, which if necessary can control a number of doors from a single central unit (fig. 23).
Forthisa pplication referto the relevant technicalmanual.
(4) RESETbutton
N.B.: To RESET, hold do wn the button forat least 4 seconds.
(5) Position monitoring mic roswitch connector (fig. 1 - ref. 4).
(6) Programming unit connector (2 pole)
(7) Programming unit connector (14 pole)

7. FUNCTION SWICH

The 961 B-E operator has a 3-position function switch (0-1-2) mounted on one of the end covers (fig. 1-ref. 12). This cover can be fitted on the right or the left as required (fig. 8).
The switch electrical connection is shown in fig. 13.
The selectable operating functions are shown in fig. 24.

POSTION "1": AUTOMATIC

Fig. 24

When an intemal/extemal command is given, the door opens and then re-closes after the pause time. POSTION "0": MANUAL/NIGHT
The position "0" can be used to select two different operating functionsaccording to the programming camied out on the 961 B-E programming unit (see section 5.3.3).
The two functions are:
MANUAL The door can be opened manually. The retum spring pulls the door closed again.
NIGHT: The extemal command is inactive. The door can be opened solely by
activating the intemal command (fig. 22) or EMERGENCY OPENING (fig. 19/a) input.
POSTITON " 2 ": OPEN
When thisfunction is selected, the dooropens and remainsopen. The doorcan be closed only by activating the EMERG ENCY CLOSURE input (fig.19/a).

8. "CODIS" EXTERNALPROGRAMMING UNIT(OPIONAL)

The 961 B-E automation unit can also be controlled by an extemal programming unit in place of the function selector a nd of the 961 B-E programming unit.
The CODIS (see figure 25) has four levels of operation, where the usercan select the operating functionsand set, programme and monitor the operation of the system.
If the CODIS is used permanently, it is necessary to activate function 7 at Level III (programming functions): see paragraph 8.3

For the electrical connection of the CODIS, consult figure 14. The operation of the CODIS can be inhibited in the two following ways:

- by cutting the jumper between terminals 3 and 4 by means of a switch (fig. 14);
- by activating function 9 at Level III; in thiscase it is possible to operate the unit temporarily after having entered code " ++--++ " by means of the " + " a nd " - " pushbuttons.
After 2 minutes the CODIS will stop a gain automatic ally.
Note:the CODIScanalso be used asa temporary programming unit. In this case, Level II (a djusta ble functions) is ina ctive. When the programming of the system has been completed, the CODIScan be removed: all the programmed functionswill remain unaltered.
Afterhaving removed the CODIS, perform a RESETorswitc h off the system.

8.1 LEVELI - OPERATING FUNCTIONS

This is the level that is a c cessible to the user. By pressing either the " + " orthe "-" pushbutton, the usercan select the operating function.
Five operating functions are available. They are displayed on the left-hand side of the front panel of the CODIS.
When a function has been selected, the corresponding LED lights up on the front panel.
Press the " + " pushbutton to move the lighting of the LEDs one position up.
Press the "-" pushbutton to move the lighting of the LEDs one position down.
The five available functions displayed on the panel are:

- LED 6 MANUAL

The door is released and can be operated manually.
The control devices are ina ctive.
o LED 5 OPEN
The door opens and remains open.

- LED 4 AUTOMATIC

The door opens when intemal or externalcommandsare active and re-closes after the pause time.

- LED 3 AUIOMATIC (SPARE)

- LED 2 ONE-WAY

Entry (or exit) inhibited; only one direction of exit (or entry); opening when intemal(orextemal) command is active; closing after pause time. The external (or intemal) control devices are inactive.

o LED 1 NIGHT
The doorislocked shutbythe electric lock.
The external command is ina ctive. The door can be opened solely by activating the intemalcommand or EMERGENCY OPENING input. The door closes after the night pause time.

8.2. LEVEL II - ADJ USTABLE FUNC TIONS

Important Levelll is active only ifthe C ODISisused permanently (function 7 of Level Ill activated). The C ODISprogramming unit has one adjusting level.
Six parameters can be set. They are displayed on the righthand side of the CODIS front panel, with the relevant LEDs:

RESET
LED 60

LED 40

LED 30

LED 20

LED 10
RESEI: repeat initialisation process (see paragraph 4.1).

OPENING SPEED: adjust to $30 \div 100 \%$ of initialisation value. The standard setting is 100\%.

CLOSING SPEED: adjust to $30 \div 66 \%$ of initia lisation value. The standard setting is 66%.

OPENING EXCURSION: adjust maximum opening by 60 to 100%. The standard setting is 100%.

PAUSETIME: a djust to 0-30 sec onds. The opening iscontrolled bymeans of the activation of the intemal/ external control devices.
The standard setting is 2 seconds.
NIGHT PAUSE TIME: adjust to 0-30 seconds. The opening iscontrolled by means of the activation of the KEY/EMERGENCY OPENING commands.
The standard setting is 7 seconds.

8.2.1. ADJ USTMENTOF PARAMEIERS

To access Level II (adjustable functions), proceed as follows:

1) Select the parameter to be adjusted by causing the relevant LED to light up. Pressthe " + " pushbutton to move the lighting of the LEDs one position up. Press the "-" pushbutton to move the lighting of the LEDs one position down.
2) Press the " + " and "-" pushbuttons simultaneously. The LED relevant to the selec ted parameterwillstartflashing in order to give information about the stored value: if the flashing rate is high, a high door speed or a short pause time has been stored; if the flashing rate is low, a low door speed or a long pause time has been stored.
3) Press the " + " or " "-" pushbutton repeatedly, in order to increase or decrease the flashing frequency of the LED, that is to say, to change the value of the selected parameter. When the " + " pushbutton is pressed, the door speed, opening excursion and pause time are increased.

When the "-" pushbutton is pressed, the door speed, opening excursion and pause time are decreased.
4) Retum to Levell (operating functions) by pressing the " + " and "-" pushbuttons simultaneously.
Notes: - The CODIS automatic ally retums to Level I after 2 minutes of inactivity.

- To prevent the settings from retuming to standard values aftera RESETora voltage drop, "protect" the programmed values by activating function 18 at Level III (see paragraph 8.3).

8.3. LEVEL: III - PROGRAMMING FUNCTIONS

The CODIS has a programming level where certa in functions can be selected.
These functions are required for several special applications.
Note: a voltage drop ora RESETcommand will not cancel the programming on Level III.
Standard programming can be restored by means of function 15 (see Table 7).
To access Level III, proceed as follows:

1) Select the NIGHToperating function by causing LED 1 to light up. Press the " + " pushbutton to move the lighting of the LEDsone position up. Pressthe "-" pushbutton to move the lighting of the LEDs one position down.
2) Pressthe " + " and "-" pushbuttonssimultaneously fora bout 2 seconds, until the red ERROR LED lights up.
3) Enter the access code by pressing the " + " and "-" pushbuttons in the following sequence: "+++--+++".
Note: after the lighting up of the red ERROR LED, if the code is not entered within $\mathbf{1 0}$ seconds the CODIS will automatic a lly retum to Level I.
4). Select the function to be programmed by pressing the " + " or"-" pushbutton so a sto obta in the combina tion of lit LEDs indicated in Table 7.
4) Pressthe " + " and " "-" pushbutto nssimultaneously to a c tivate ordeactivate the function, a nd check the status of LED 6, according to the indications of Table 7.
Note: the standard programming is the one with LED 6 unlit (OFF).
5) To return to Levell (operating functions), repeatedly press the "-" pushbutton until all the six LEDs are off, then press the " + " and "-" pushbuttons simultaneously.
Note: the CODIS will automatic ally retum to Level I after 2 minutes of ina ctivity.

8.3.1. AVAILABLE FUNC TIONS

function 1

One-way with lock activated: in the ONE-WAY operating function, the closed door is locked by the electric lock.
One-way with lock deactivated: in the ONE-WAY operating function, the closed door is not locked by the electric lock.

function 2

NIGHTfunction: the activation of the input between terminals 2 and 3 (960MP) selects the NIGHT operating function, with priority over the function selected on the CODIS.
ONE-WAY function: the activation of the input between terminals 2 and 3 (960 MP) selects the ONE-WAY operating function, with priority over the function selected on the CODIS. The control pa nel will show whic h function has been selected, by means of the lighting up of LED 1 or 2.
When the input is deactivated, the operating function previously selected on the CODIS retums automatic ally.

function 3

Gong output: the operation of the closing safety device activates the 24 Vdc output between teminals 14 and 24 (960MP) for 1 second, at intervals of 0.5 sec onds.

Table 7: programming functions

FUNCT.NO.	LEDS					FUNCTIONS	LED 6
	1	2	3	4	5		
0	OFF	OFF	OFF	OFF	OFF	Output Level III	OFF
1	ON	OFF	OFF	OFF	OFF	One-way with lock active One-way with lock inactive	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$
2	OFF	ON	OFF	OFF	OFF	NIG HT function (terminal 3-960MP) ONE-WAY function (terminal 3-960MP)	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$
3	ON	ON	OFF	OFF	OFF	Gong output (teminal 24-960MP) Interlock output (terminal 24-960MP)	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$
4	OFF	OFF	ON	OFF	OFF	SLAVE (interlock) MASTER (interlock)	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$
5	ON	OFF	ON	OFF	OFF	Emergency closing (terminal 11-960MP) Emergency opening (terminal 11-960MP)	OFF ON
6	OFF	ON	ON	OFF	OFF	Emergency command - N.C. contact (terminal 11-960MP) Emergency command - N.O. contact (terminal 11-960MP)	OFF ON
7	ON	ON	ON	OFF	OFF	CODIS - temporary connection CODIS - permanent installation	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$
8	OFF	OFF	OFF	ON	OFF	15 kg static force 9 kg static force	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$
9	ON	OFF	OFF	ON	OFF	CODIS inhibited inactive CODIS inhibited active	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$
10	OFF	ON	OFF	ON	OFF	Standard opening pause time Immediate closing	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$
11	ON	ON	OFF	ON	OFF	Door open/closed indication - N.O. contact (teminals 18/19-960MP) Door open/closed indication - N.C. contact (terminals 18/19-960MP)	OFF ON
12	OFF	OFF	ON	ON	OFF	Alarm waming - N.O. contact (terminal 21-960MP) Alarm waming - N.C. contact (terminal 21-960MP)	OFF ON
13	ON	OFF	ON	ON	OFF	"Double swing door" output inactive "Double swing door" output active (teminal 23-960MP)	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$
14	OFF	ON	ON	ON	OFF	SLAVE (double swing door) MASTER (double swing door)	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$
15	ON	ON	ON	ON	OFF	Restore STANDARD settings Retain programmed settings	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$
16	OFF	OFF	OFF	OFF	ON	Opening commands stored (interlock) Opening commands not stored (interlock)	OFF ON
17	ON	OFF	OFF	OFF	ON	TEST programme inactive TEST programme active	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$
18	OFF	ON	OFF	OFF	ON	Level II RESET a ctive Level II RESET inactive	$\begin{aligned} & \text { OFF } \\ & \text { ON } \end{aligned}$
19	ON	ON	OFF	OFF	ON	STANDARD intemal command (teminal 9-960MP) STEP-BY-STEP intemal command (terminal 9-960MP)	OFF ON

Interlock output: between terminals 24 and 25 (960 MP) it is possible to pick up the signal for the interlocking of the two a utomation units (see paragraph 9.1).

function 4

SLAVE/MASTER: in the interlocking operation of the two automation units, it is necessary to define which door is to operate as MASTER (nomally it is the inner one) and which door is to operate as SLAVE.

function 5

Emergency closing: the activation of the input between terminals 11 and 15 (960MP) controlsthe closing of the doorno matter which operating function has been selected.
Emergency opening: the activation of the input between temminals 11 and 15 (960MP) controls the opening of the door no matter which operating function has been selected.

function 6

Emergency command - N.C. contact: to activate the input between terminals 11 and 15 (see function 5), an opening pulse of a N.C. contact is required.
Emergency command - N.O. contact: to activate the input between terminals 11 and 15 (see function 5), a closing pulse of a N.O. contact is required.

function 7

CODIS-temporary connection: the CODIS can be used only initially to activate certain functions. When the extemal programming unit is removed, the function that has been a ctivated remainsstored. In this case, Levelll is inhibited, and the settings (speed, pause times, etc.) must be performed by means of the intemal $961 \mathrm{~B}-\mathrm{E}$ programming unit.
CODIS - permanent installation: the CODIS is installed perma nently; the four operating levels are all active.

function 8

15 kg static force / 9 kg static force: this function makes it possible to change the sensitivity of the anti-crushing device.

function 9

CODISinhibited inac tive / C ODISinhibited active: thisfunction makesit possible to activate the CODISelectronic inhibition. In this condition, no programming can be performed at any level.
To release the CODIS temporarily, press the " + " and " - " pushbuttons in the following sequence: "++--++".
This operation may be caried out for two purposes:

1) to change the operating function ormodify some settings at Level II; in this case, after 2 minutesthe CODIS inhibition will come again;
2) to remove the CODIS inhibition; in this case, it is necessary to access Level III and to disable that function.

function 10

Stand ard opening pause time: the pause time begins with the door open and the control devices (e.g., sensors) inactive.
Immediate closing: the doorcloses when the control devices (e.g., sensors) are inactive. In thiscase, directional sensorsmust be used.

function 11

Door open/closed indication - N.O. contact: the open and closed positionsof the doorare indicated by the closing of an N.O. contact (terminals 18/19-960MP).

Door open/closed indication - N.C. contact: the open and closed positions of the doorare indic ated by the opening of a N.C. contact (terminals 18/ 19-960MP).

function 12

Alarm wa ming-N.O. contact: the a larm condition is indic ated by the closing of a N.O. contact.
Alarm waming - N.C. contact: the ala m condition isindic ated by the opening of a N.C. contact.

function 13

"Double swing door" outputinactive/active: betweenterminals 23 and 25 (960MP) it is possible to pick up the signal for the operation of a double swing door (see paragraph 9.2).

function 14

SLAVE/MASTER: in the ap plic ation fora double swing door, the automation of the leaf whose opening is to be anticipated must be programmed asMASTER, while the automation of the leaf whose opening isto be delayed must be programmed as SLAVE.

function 15

Restore STANDARD settings/Retain programmed functions: this function makes it possible to check whether any function has been programmed differently from the standard settings. If at least one function hasbeen programmed differently from the standard settings, LED 6 is lit (ON).
In this case all the standard settings can be restored by pressing the " + " and "-" pushbuttons simultaneously.
After this operation, it is advisa ble to perform a RESET.

function 16

Opening commandsstored (interlock): in interlock operation, it is not necessary to wait until one door has closed before commanding the opening of the other.
Opening commands not stored (interlock): in interlock operation, it is necessary to wait until one door has closed before commanding the opening of the other.
Opening commandsgiven during the operating cycle of the first door will have no effect.

function 17

IESTprogramme inactive/ active: thisfunction makesit possible to activate consec utive operating cycles. The control devices, in a ny case, take priority over the operation of the system. The programme can be cancelled by performing a RESET.

function 18

Level II RESETactive / inactive: thisfunction makesit possible to preserve the settings of the opening, closing and opening excursion speedseven in case of a voltage drop or RESET.

function 19

STANDARD intemal command: the activation of the intemal control device controls a complete door cycle (standard operation).
STEP-BY-STEP intemal command: the activation of the intemal controldevic e controlsa sequence ofdooropening / stopping / closing / stopping / opening, and so on.

8.4. LEVEL IV - SELF-DIAGNOSIS

The CODISprogramming unithasa self-d iagnostic level, which, in case of a fault, interrupts the display of the operating function every 2 seconds in order to display the malfunction condition for 0.5 seconds. The type offault can be id entified by observing the combination of LEDS 1-5 thatare lit togetherwith the red ERROR LED (see Table 8).

Table 8

NO.	LEDS					FAILURE	NOTE
	1	2	3	4	5		(*)
1	ON	OFF	OFF	OFF	OFF	Motor fault	B
2	OFF	ON	OFF	OFF	OFF	Govemor and brake fault	B
3	ON	ON	OFF	OFF	OFF	Initialisation process not possible Opening angle insufficient	B
4	OFF	OFF	ON	OFF	OFF	Initia lisation process not possible Opening angle excessive	B
5	ON	OFF	ON	OFF	OFF	Friction or spring load excessive	B
6	OFF	ON	ON	OFF	OFF	Spring load insufficient	B
7	ON	ON	ON	OFF	OFF	Motor overload	B
8	OFF	OFF	OFF	ON	OFF	Encoder fault (disconnected or in short circuit)	B
9	ON	OFF	OFF	ON	OFF	Cut-off relay fault	B
10	OFF	ON	OFF	ON	OFF	EPROM / RAM / relay fault (automatic control)	B
11	ON	ON	OFF	ON	OFF	Short circ uit on 24 V (960MP electronic control unit or extemal)	B
12	OFF	OFF	ON	ON	OFF	Monitoring microswitch fault	A
13	ON	OFF	ON	ON	OFF	Electric lock fault	B
14	ON	ON	ON	ON	OFF	Power supply insuffic ient (<140 V)	B
15	OFF	OFF	OFF	OFF	ON	Microprocessor fault	B
16	ON	OFF	OFF	OFF	ON	Incorrect "door closed" position	A
17	OFF	ON	OFF	OFF	ON	Microprocessor alam	B
18	ON	ON	OFF	OFF	ON	"Double swing door" communication enror	A

(*) A: this error condition does not inhibit the operation of the system.
B : thiserrorcondition inhibitsthe operation of the automation unit until the fault has been eliminated.

9. SPECIALAPPUCATIONS

9.1. INTERLOCK

The programmable interlock function makes it possible to interlockthe operation of two doorsso that the opening of one is dependent on the closing of the other and vice versa.

Electric al connections

- Connect the two automations to the same power supply line.
- Connect the X2 temminal stripsof the two 960MP electronic control units to each other, as shown in Figure 26.
- Connect the control devices and the emergency command, if present, as shown in figure 27.
The emergency comma nd makesit possible forthe two doorsto open orclose simulta neously, depending on the programming performed on the CODIS (see Table 7, function 5).
Note: the control devices must be connected only to the KEY input (see figure 27).

Programming and selection of operating function

To enable the interlock operation, the appropriate programming of the following Level III functions must be performed (see paragraph 8.3):

- Function 3: select the Interlock outputoption on both the CODIS programming units (IED 6 lights up).
- Function 4: select the MASTER option on the CODIS unit of the inner door (LED 6 lights up); select the SLAVE option on the CODIS unit of the outer door (LED 6 goes out).
- Function 16: select the desired option on both the CODIS programming units.

If the Opening commands stored option has been selected (LED 6 unlit), it is not necessary to wait for one of the doors to close before controlling the opening of the other.
When the closing of the first door has been completed, the second dooropens a utomatically.
Ifthe Opening commandsnotstored option ha sbeen selec ted (LED 6 lit) it is necessary to wait for one of the doors to close before controlling the opening of the other.
Opening commands given during the operating cycle of the first door will have no effect.
Table 9 indicates the functions to be programmed.
Table 9

FUNCT.NO.	LEDS				FUNCTIONS	IED 6	
	1	2	3	4	5		
3	ON	ON	OFF	OFF	OFF	Gong output (terminal 24-960MP) Interlock output (terminal 24-960MP)	OFF ON
4	OFF	OFF	ON	OFF	OFF	SLAVE (interlock) MASTER (interlock)	OFF
16	OFF	OFF	OFF	OFF	ON	Opening commands stored (interlock) Opening commands not stored (interlock)	ON

IMPORIANT: the interlock operation is activated only if the NIGHTor ONE-WAY operating function has been selected on both the CODIS programming units (see pa ragraph 8.1).

9.2. DOUBLE SWNG DOOR

The programmable "double swing door" function makes it possible to synchronise the movement of the two leaves that face each other (see figure 29). For a correctoperation of the system, the opening of one leaf must be anticipated and its closing must be delayed.
Note: the difference between the opening a ngles of the two leaves must not exceed 20°.

Electric al connections and programming

- C onnect the X2 terminal strips of the two 960MP electronic c ontrol units to each other, as shown in figure 28.
- Connect the intemal and extemal control devices, the emergency command, if present, and the electric lock to the electronic control unit of the MASTER a utomation (see fig. 29).
Note: the MASTER a utomation a c tua testhe leafwhose opening
movement must be antic ipated (a nd whose c losing movement must be delayed).
- Connect the safety devic eson the 960MP electronic control units of the MASTER and SLAVE automations.
- Connect the two automations to the same power supply line.
- On both the automations, activate function 13, "double swing door" output (ON), then define which is the MASTER leaf and which is the SLAVE one by programming function 14 (fig.29).
Table 10 indic ates the functions to be programmed.
Table 10

FUNCT.NO.	LEDS				FUNCTIONS		LED 6
	1	2	3	4	5		
13	ON	OFF	ON	ON	OFF	"Double swing door" output inactive "Double swing door" output active	OFF
14	OFF	ON	ON	ON	OFF	SLAVE (double swing door) MASTER (double swing door)	OFF ON

Fig. 28

10. MAINTENANCE

It is advisable to check the automation unit once a year, in orderto make sure that the dragging system and closing spring a re in perfect working order.

Drive system (fig. 1-ref. 7)

Check the toothed wheels and, if necessary, lubric ate them with g rease for gears or bearings TRIBOTECH VIP 473.
Important never use spray lubric ants.
Closing spring (fig. 1 - ref. 10)
With the door closed, draw a vertical line on the spring, as shown in figure 30.
Open the doorand check the state of the line: figure 30 shows two possible configurations.
In case B (fig. 30), lubricate the spring coils with KÜBER
MICROLUBE GBUY 131 grease, with the door both open and closed.

Adjustment of spring load

If the spring load isinsuffic ientorexcessive, proceed asfollows:

1) Select the MANUAL function (function selector in position " 0 ").
2) Release the arm fastened to the shaft from the second transmission arm.
3) Keep the arm in position and remove the screw that adjusts the spring load (fig. 1 - ref. 5).
4) Load or unload the spring by rotating the arm in the appropriate direction, and insert the screw in positioning bore K (fig. 31).
5) Restore the system and check its operation is correct.
6) Perform any adjustments that may be needed, and lock the adjusting screw (fig. 1 - ref. 5) with Loctite.
Important after the adjustment of the spring load, the system travel must be initialised. Proceed as follows:

- Remove the a m from the drive shaft.
- Set all the mic roswitc hes of the 961 B-E programming unit (fig. 9 - ref. 4) to position OFF.
- Rotate all the adjusting trimmers (fig. 9 - ref. 3) counterclockwise all the way.
- Press the RESET pushbutton for at least 4 sec onds.
- Afterthe initialisation cycle hasbeen completed, switch off the power supply, restore the automation system, and perform the start-up as described in paragraph 4.

Fig. 30

Fig. 31

END-USER GUDE

961 B-E Automation Systems

Read the end user guide carefully before using the product and keep it in a safe place forfuture reference.

GENERAL SAFIY REGULATIONS

When correctly installed and used, the 961 B-E automatic unit assures a high level of safety. A few simple rules should be followed to prevent problems from a rising accidentally:

- Do not stand orallow children oradultsto stand within range of the door, especially during operation, and do not leave objects near it.
- Do not allow children to play with the door.
- Do not deliberately obstruct movement of the door.
- Keep the "a utomatic door" signseffic ient and clearly visible.
- In the event of a malfunction, select MANUAL OPERATION and wait fora qualified technic ian to perform the necessary repair work.
- Do not modify the components of the automatic unit.
- Do notattemptto repairthe automatic unitorto performany operation on it. Call qualified FAAC technic ians only.
- At leastonce every 6 monthsha ve qua lified personnelcheck that the a utomatic unit, sa fety devicesand earth connection are in working order.

DESCRIPIION

The 961 B-E automatic unit for swing doors is a one-piece unit consisting of an electromechanical device that allows door opening to be controlled by means of a driving arm. The door is re-closed by a spring system.
The operatorcan be installed either on the lintel or on the door structure itself.
The stainless steel protec tive casing housesthe electronic control unit used to program and control the operation of the system.
The a utomatic unit 961 B-E has a selector which can be used to choose the operating logic shown in fig. 1. A CODIS programming unit (fig. 2) can be installed as an altemative to the function selector, in which case the following operating functions are available:

OPERATING FUNCTIONS

o LED 6 MANUAL
The door is released and can be operated manually.
The control devices are inactive.
o LED 5 OPEN
The dooropens and remainsopen.

- LED 4 AUTOMATIC

The door opens when intemal or externalcommandsare active and re-closes after the pause time.

- LED 3 AUIOMATIC (SPARE)

o LED 2 ONE-WAY
Entry (or exit) inhibited; only one direction of exit (or entry); opening when intemal (orextemal) command is active; closing after pause time.
The extemal (or internal) control devices are inactive.
o LED 1 NIGHT
The doo rislocked shutby the elec tric lock.
The external command is inactive. The door can be opened solely by activating the intemal command or EMERGENCY OPENING input. The doorc losesafterthe nightpause time.

The different logic modes are active when the corresponding LED is illuminated steadily. To change the operating function press the +or-control button.

MANUAL OPERATION

If the door has to be activated manually due to failure of the electrical powersupply ora malfunction of the automatic unit, proceed asfollows:

Function selector

- Tum the selector to the " 0 " MANUAL/NIG HT position
- Open or close the doormanually

CODIS unit

- Pressthe +button to set the operating function to the manual position with LED 6 lit steadily.

REIURN TO NORMAL OPERATION

Function selector

- Tum the function selector to the " 1 " AUTOMATIC position.

CODIS unit

- Press the - button to set the operating function in the desired position (LED lit steadily). See fig. 2.

Fig. 1
POSTITON "1": AUTOMATC
When an intemal/extemal command is given, the dooropensand then re-closesafter the pause time. POSITION "0": MANUAL/NIGHT
The position " 0 " can be used to select two different operating functionsaccording to the programming camied out on the 961 B-E programming unit. The two functions are:
MANUAL: The door can be opened manually. The retum spring pulls the door closed again. NIGHT: The extemal command is inactive. The door can be opened solely by activating the intemal command or EMERG ENCY OPENING input. POSTION " 2 ": OPEN
When this function is selected, the door opens and remains open. The door can be closed only by activating the EMERG ENCY CLOSURE input.

