CE DECLARATION OF CONFORMTY

Manufacturer: FAAC S.p.A.
Address: Via Benini, 1 - 40069 Zola Predosa BOLOGNA - ITALY

Declares that 578D c ontrol board,

- conforms to the essential safety requirements of the following directives:

73/23/EEC and subsequent amendment 93/68/EEC.
89/336/EEC and subsequent a mendment 92/31/EEC and 93/68/EEC
Additional note
This product underwent tests in a typic a l uniform configuration
(all products manufactured by FAAC S.p.A.).

Bologna, 01 J anuary 2003
The Managing Director
A. Bassi

WARNINGS FOR THE INSTAШER GENERALSAFETY OBUGATIONS

1) ATIENTION! To ensure the safety of people, itis important thatyou read all the following instructions. Inc orectinstallation or inc orectuse of the product could cause serious ham to people.
2) Carefully read the instructionsbefore beginning to install the product.
3) Do not leave packing materials(plastic, polystyrene, etc.) within reach of children as such materials are potential sources of danger.
4) Store these instructionsfor future reference.
5) This product was designed and built stric tly for the use indic ated in this documentation. Any other use, not expressly indicated here, could compromise the good condition/operation of the productand/orbe a source ofdanger.
6) FAAC dec linesalliability caused by improperuse oruse otherthan thatfor whic h the automated system wasintended
7) Do notinstallthe equipment in a n explosive atmosphere: the presence of infla mmable gasorfumesisa seriousdangerto safety.
8) The mechanic alpartsmustconform to the provisionsofStandardsEN 12604 and EN 12605 .
Fornon-EUc ountries, to obta in an adequate levelofsafety, the Sta nda rds mentioned above mustbeobserved, inadditionto nationallegalregulations.
9) FAAC is not responsible for failure to observe Good Technique in the construction ofthe closing elementsto be motorised, orforanydeformation thatmayoccurduring use.
10) The insta llation mustc onform to Standa rdsEN 12453a nd EN 12445 Fornon-EUcountries, to obta in an adequate levelofsafety, the Standards mentioned above mustbe observed, inadditionto nationallegalregulations.
11) Before attempting any job on the system, cutoutelectric alpower.
12) The mainspower supply ofthe automated system mustbe fitted with a nallpole switch with contactopening distance of 3 mmorgreater . Use ofa 6A themalbreakerwith all-pole c irc uitbreakisrec ommended.
13) Make sure thata differential switch with threshold of 0.03A isfitted upstream ofthe system.
14) Make sure that the earthing system isperfectly constructed, and connect metal partsof the meansof the closure to it.
15) The safetydevices(EN 12978standard) protectanydangerareasagainst mechanicalmovementRisks, such asc rushing, dragging, a nd shearing.
16) Use of atleastone indic ator-light(e.g. FAACUG HT) isrec ommended for every system, aswella sa wa ming sign a dequately sec ured to the frame structure, in addition to the devic esmentioned atpoint " 15 "
17) FAAC declinesall lia bility asconcemssafety a nd effic ientoperation of the automated system, ifsystem componentsnotproduced byFAAC are used.
18) Forma intena nce, stric tly use orig inal partsby FAAC.
19) Do notin anyway modify the componentsofthe automated system.
20) The installershallsupply allinformation conceming ma nualoperation of the system in case of an emergency, and shall ha nd overto the userthe wa mingshandbooksupplied with the product.
21) Do nota llow childrenoradultsto stay nearthe produc twhile itisoperating
22) Keep remote controlsorotherpulse generatorsa wa y from child ren, to prevent the automated system from being a ctivated involunta rily.
23) Transit is permitted only when the automated system is idle.
24) The usermust notattemptany kind of repairordirect action whatever and contactqualified personnelonly.
25) Maintenance: check at least every 6 months the effic iency of the system, partic ularly the effic iency of the safety devices (including, where foreseen, the operator thrust force) and of the release devices.
26) Anything notexpressly spec ified in these instruc tions is notpermitted.

CONIROL BOARD 578D

1.WARNINGS

Important Before attempting any work on the control board (connections, maintenance), alwaystumoffpower.

- Install, upstream ofthe system, a differential themal breakerwith adequate tipping threshold.
- Connect the earth cable to the appropriate terminal on the J7 connectorof the equipment(see fig.2).
- Always separate powercables from control and safety cables (push-button, receiver, photocells, etc.). To avoid any electric noise, use separate sheaths ora shielded cable (with earthed shield).

2. TEC HNICAL SPECIFCATIONS

Power supply V~ (+6\% -10\%)	230
Absorbed power (W)	10
Motor max. load (W)	1000
Accessories max. load (A)	0,5
Operating ambient temperature	$-20^{\circ} \mathrm{C}+55^{\circ} \mathrm{C}$
Protection fuses	2 (see fig. 1)
Function logics: Automatic / "Stepped" automatic / Semi-automatic / Safety devices / Semi-automatic B / Dead-man C / "Stepped" semi-automatic	
Work time	Programmable (from 0 to 4 min.)
Pause time	Programmable (from 0 to 4 min.)
Thrust force	Adjustable over 50 levels

Teminal board inputs: Open - Partial Open - Opening safety devic es - Closing safety devices - Stop - Edge - Power supply +Earth - Opening and closing limitswitches - Encoder
Teminal board outputs: Flashing lamp - Motor - 24 Vdc accessories power supply - 24 Vdc indicator-light / Timed output / Electric lock command - Fail safe
Rapid connector 5-pin card connection for Minidec, Decoder or RP receivers Programming 3 keys (,+- - F) and display, "basic " or "advanced" mode Basic mode programmable functions: Function logic - Pause time - Thrust Force - Opening-closing direction

Advanced mode programmable functions: Torque at initial thrust - Braking -
Fail safe - Pre-flashing - Indicator-light/Timed output/Electric lock command - Opening and closing safety devices logic - Encoder/ Anti-crushing sensitivity - Decelerations - Partial opening time - Work time - Assistance request - Cycle counter

3.LAYOUT AND COMPONENTS

Fig. 1

dL	SIGNAШNG ANDPROGRAMMING DISPLAY
Led	INPUISSTATUSCONTROLLED
J1	LOWVOLTAGETERMINALBOARD
$\mathbf{J 2}$	CONNEC TORFORDECODER/MINIDEC/RPRECENER
J6	MOTORSANDFLASHING LAMPCONNECTONTERMINALBOARD
J7	230Vac POWERSUPPLYTERMINALBOARD
F1	MOTORSAND TRANSFORMER PRIMARY WINDING FUSE(F5A)
F2	LOWVOLTAGEANDACCESSORIESFUSE(T80OmA)
F	"F"PROGRAMMING PUSH-BUTION
-	"-"PROGRAMMING PUSH-BUTION
+	"+"PROGRAMMING PUSH-BUTION

4.ELECTRIC CONNECTIONS

NOTE: The 578D equipment is able to command electromechanic aloperatorsforsliding gatesand industrialsectional doors. Anything refeming to gates in these instructions also applies to doors. Any differences are shown in the specific paragraphs.

4.1. Connection of photoc ells and safety devices

Before connecting the safety devic esand photocellswe advise you to select the type ofoperation according to the movement a rea they have to protect (see fig. 3 forexample):

Opening safety devices:they a re tripped when a o obstac le is detected only during gate opening movement. They cause immediate closure and resumption of opening motion on release (see programming in par.5.2).
Closing safety devices: they a re trip ped when an obstacle is detected only during gate closing movement. They cause re-opening, eitherimmediate oron release (see programming in par.5.2).
Opening/closing safety devices: they a re tripped during the gate opening and closing movements. They cause stopping and restart motion on release.
"Edge"safetydevic es:they a re tripped during the gate opening and closing movements. Theyc a use immediate reversal of motion a nd stopping aftertwo seconds.
Encoder:itistripped ifthere isan obstacle during gate opening and closing movements. Itc a usesimmediate reversalof motion and stopping aftertwo seconds.
Note: in operatorsforindustrial sectional doors, the anticrushing function isnottripped during closing, bec ause the operatoracts on the rope shaftand notdirectly on the door.
N.B. If two or more safety devices have the same function (opening, closing, opening and closing, edge), the contacts mustbe connected to each otherin series (fig. 4).

N.C. contactsmustbe used.

N.B: Ifsafety devic esare notused,jumperc onnect the terminals as shown in fig. 5.
The most common photocell and safety device lay-outs are shown below (from fig. 6 to fig. 13).

Connection of a pair of opening photocells, a pair of closing photocell and an edge safety device

Fig. 10

Connection of two pairs of closing photocells and two edge safety devices

Fig. 11

Connection of a pair of closing photocells, a pair of opening photocells and a pair of opening/closing photocells

Fig. 12

Connection of a pair of closing photocells and a pair of opening/closing photocells

Fig. 13

Connection of two N.O. contacts in parallel (e.g. Open A, Open B)

Fig. 14

4.2. Terminal board - Power supply (fig. 2)

POWERSUPPLY (terminalsPE-N-L):
PE: Earth connection
N: Powersupply (Neutral)
L : Powersupply (Line)
NB::Forcorectoperation, the board mustbe connected to the earth conduc torin the system. Installa n a dequate differential thermalbreakerupstrea m of the system.

4.3. J6 Terminal board - Motors and flashing lamp (fig. 2)

MOTOR - (terminals 17-18-19): M otorc onnection.
Operators for sliding gates: refer to paragraph 4.6 for instructionson correctconnection of the equip ment to the interface board on the operator.
Operator541:referto paragraph 4.7 forinstructionson correct connection of the equipment to the interface board on the operator.

LAMP - (terminals 20-21): Flashing la mp output 230Vac max60W.
4.4. J1 Terminal board - Accessories (fig. 2)

Consult the logic tables for a detailed description of inputs operation.

OPEN A - "Total Opening" command (terminal 1): a ny pulse generator(push-button, detector, etc.) which, byclosing a contact, commandstotalopening and/orclosing ofthe gate leaf.
To installseveraltotalopening pulse generators, connect the N.O. contactsin parallel (fig. 14).
OPENB- "Partialopening" or"Closing"command (terminal2): any pulse generator(push-button, detector, etc.) which, by closing a contact, commandspartial opening and/ orc losing ofthe gate leaf. In the Band Clogics, it always commandsgate closure.
To installseveral partialopening pulse generators, connect the N.O. contacts in parallel (fig. 14).
FSW OP - Opening safety devic es contact (terminal 3): The purpose ofthe opening safety devic esisto protectthe leaf movementarea during opening. During opening, in the $\mathbf{A}-$ AP-S-E-EPlogicsthe safety devic esreverse the movement of the gate, orstop and restart the movement when it is released (see advanced programming inChpt5.2). During the opening cycle inlogicsBand \mathbf{C}, they intemuptmovement. Theyneveroperate during the closing cycle. Ifthe Opening safety devicesa re engaged whenthe gate isclosed, they prevent the opening movement. To installse veralsafety devic es, connectthe N.C.contacts in series(fig.4).
NB.: Ifno opening safety devicesare connected, jumper connectinputs FSWOP and -TX FSW(fig. 5).
FSW CL - Closing safety devices contact (teminal 4): The purpose ofthe closing safety devic esisto protectthe gate movementarea during closing. During closing, in the A-AP-S-E-EPlogics, the safetydevic esreverse the movementof the gate, or stop and reverse the movement when it is released (see advanced programming in Chpt 5.2). During the closing cycle in logics \mathbf{B} and \mathbf{C}, they intemupt movement. Theyneveroperate during the opening cycle. Ifthe Closing safety devic esare engaged when the gate isopen, they prevent the closing movement.

To installseveralsafety devices, connectthe N.C.contacts in series(fig.4).
NB.: If no closing safety devices are connected, jumper connectterminalsFSWCLand -TX FSW(fig. 5).
STOP - STOP contact (terminal 5): any device (e.g. a pushbutton) which, by opening a contact, stops gate movement.
To installseveralSTO Pdevices, connectthe N.C. contacts in series(fig.4).
NB.:IfSTOP devic esare notconnected, jumperconnect the STOPand - terminals.
SAFE-EDGEsafety device contact(terminal6):The purpose of the "edge"safety device isto protect the leafmovement area during opening/closing. In alllogic s, during opening and closing, the safetydevic e reversesgate movementfor 2 seconds. If the safety devic esoperate aga in during the 2-sec ond sreversing time, itstopsmovement(STOP) without anyreversing.
If the Edge safety deviceisengaged while the gate isclosed oropen, it prevents movement.
To installseveralsafety devices, connectthe N.C.contacts in series(fig.4).
NB.: If edge safety devices are not connected, jumper connect the SAFtand - inputs(fig. 5).
FC1 / FC2- Opening and closing limit-switch contacts (teminals7and 8): The pupose ofthe opening a nd closing limit-switc hesisto esta blish the reference pointforthe stop, orforstartofdeceleration (pre-and post-limitswitc h), orfor operator braking (see advanced programming in Chpt 5.2). The limit-switch device musthave an NC contact for connection between the input (FC1 or FC2) and the equipment'sterminal (see Fig.2).
OPERATORSFORSUDING GATES: consult pa ra graph 4.6 forcorrect connection of limit-switc hesand motor.
OPERATOR 541: consult paragraph 4.7 for correct connection of limit-switchesand motor.
ENCODER-Contactsofmotorrotation control sensor(terminal 9): This input isdesigned forconnection of the Encoder sensor. The presence of the encoderissignalled - when the gea motorisrunning - bythe fla shing ofthe "ENC "LED on the board. If the encoderisused, thee quipment knows the exact gate position during the entire movement, a nd also controlsotherfunctionswith greater precision, such as partial opening and decelerations (see advanced programming in Chpt5.2.). The encoder also operates as an anti-crushing device: if the gate strikesa n obsta c le during opening orc losing, the enc oder reversesgate leafmovementfor2sec onds. Ifthe encoder operates again during the 2 -sec ond reversing time, it STO PSmovementwithout performing a ny reversing.
Note: inoperatorsforindustrialsectionaldoors, the anticrushing function is notactive during closing, because the operatoractson the rope shaftand notdirec tly on the door.

- Negative forpowersupply to ac cessories(terminals10, 11 and 12)
+ 24Vdc-Positive forpowersupplyto accessories(terminals 13and 14)
Important Ac cessoriesmax. load is 500 mA . To calculate absorption values, referto the instructionsforindividual accessories.

TX-FSW- Negative forpowersupply to photocell transmitters

 (teminal 15)If you use thisterminal forconnecting the negative for sup plying powerto the photocelltra nsmitters, you may, ifnecessary, also use the FAILSAFEfunction (see advanced programming in Chpt5.2).
If this function is enabled, the equipment checks operation of the photocells before every opening or closing cycle.
W.L - Powersupply to indic ator-light/ timed output/ electric lockc ommand (terminal 16):
Connectone ofthe following between thisterminaland +24 V : an ind ic a tor-light ($24 \mathrm{Vdc}-3 \mathrm{~W}$ max) if any, ora control relay ($24 \mathrm{Vdc}-3 \mathrm{~W}$ max) if you wish to use it a sa timed output, or a command foran electric lock (see advanced programming in Chpt 5.2). To avoid geopardising correct operation of the system, do not exceed the indic ated power.
4.5. Connector 2-Rapid connectiontoMinidec, DecoderandRP

This is used forrapid connection of Minidec, Decoderand RP receivers(see fig. 15, 16 and 17). Connect the a c cessory, with the componentsside facing the inside of the board. Insert and remove aftercutting power.

4.6. Connection of operator 844

Make the connectionsbetween the 578D equipmenta nd the inter-c onnection board mounted on the operator, observing the diagram in fig.18. Referto paragraph 6.2 forinstructionson putting into operation.

4.7. Connection of operator 541

Make the connectionsbetween the 578D equipmenta nd the inter-connection board mounted on the operator, observing the dia gram in fig.19.
A stop push-button, if a ny, must be located in serieswith respect to the connection between the STOP input of 578D a nd the SAFETY of the 541 INTERFACE. Refer to paragraph 6.3 for
instructionson putting into operation.

4.8. Connectionofoperatorswithouton-board interface

To make connections between the 578D equipment and operatorswithouta on-board interface board, use the diagram figure 20. Refer to paragraph 6.2 for putting into operation, ta king care overthe limit-switch connections.

Fig. 15
Fig. 16

Fig. 17

Fig. 18

Fig. 19

Fig. 20

5．PROGRAMMING

To program operation of the automated system，you have to access the＂PROGRAMMING＂mode．
Programming is split into two parts：BASIC and ADVANCED．

5．1．BASIC PROGRAMMING

To access BASIC PROGRAMMING，press key \mathbf{F} ：
－if you press it（and hold it down），the display shows the name of the first function．
－if you release the key，the display shows the value of the function that can be modified with keys＋and－
－if you press \mathbf{F} again（and hold it down），the display shows the name of the next function，etc．
－when you reach the last function，press \mathbf{F} to exit the program， and the display resumes showing the gate status．
The following table shows the sequence of functions accessible in BASIC PROGRAMMING：

5．2．ADVANCED PROGRAMMING

To access ADVANCED PROGRAMMING，press key F and，as you hold it down，press key + ：
－if you release key $\boldsymbol{+}$ ，the display indicates the name of the first function．
－if you release key \mathbf{F} too，the display shows the value of the function that can be modified with keys + and - ．
－if you press key \mathbf{F}（and hold it down），the display shows the name of the next function，and if you release it，the value that can be modified with keys + and－is shown．
－when you reach the last function，press \mathbf{F} to exit the program， and the display resumes showing the gate status．
The following table shows the sequence of functions accessible in ADVANCED PROGRAMMING：

BASIC PROGRAMMING（F）		
Display	Function	Default
1 11	FUNCTION LOGICS（see tab． $1 / a-g$ ）： I－I＝Automatic 位に＂＝＂Stepped＂automatic 与＝＂Safety＂Automatic E＝Semi－automatic 江＝＂Stepped＂Semi－automatic $I^{-}=$Dead－man ட＝＂B＂Semi－automatic	口 ロ1
口1 II	PAUSE TIME： This has effect only if the automatic logic was selected．Adjustable from ！ 1 1 to には sec．in one－second steps． Subsequently，display changes to minutes and tens of seconds（separated by a point）and time is adjusted in 10 －second steps，up to the maximum value of $-!!!$ minutes． E．g．if the display shows ご！＝，pause time is 2 min ．and 50 sec ．	$\left\lvert\, \begin{array}{ll} \text { 二l } & \text { —l } \\ \text { In } \end{array}\right.$
口 I＿I	FORCE： Adjusts Motor thrust． I）I＝minimum force 乌 $\square_{\text {I }}$＝maximum force	二1 1－1
■1 1	OPENING DIRECTION： Indicates the gate opening movement and makes it possible not to change the motor and limit－ switches connections on the terminal board． －$\exists^{\prime}=$ Standard opening movement 齊＝Reverse opening movement	－二＇
	STATUS OF AUTOMATED SYSTEM： Exit from programming，save data，and return to gate status viewing． ＝Closed II \quad＝Now opening \square に＂$=A t$＂STOP＂ に 1 ＝Open － 1 ＝Pause に＝＂FAIL SAFE＂tripped 高＝Now closing $17-1=$ Now reversing に日＝Photocells tripped	

ADVANCED PROGRAMMING F＋+		
Display	Function	Default
三1	MAXIMUM TORQUE AT INITIAL THRUST： The motor operate at maximum torque （ignoring the torque setting）at start of movement．Useful for heavy leaves． $\square_{\prime}^{\prime}=$ Active ール ロ＝Disabled	I＿1
11	FINAL BRAKING： When the gate engages the opening or closing limit－switch，a braking stroke can be selected to ensure the leaf is stopped immediately．If decelerations are selected， braking starts when they finish． At II value，braking is disabled． Time can be adjusted from I！I to III sec．in 0.01 －second steps． II＝Braking disabled 	■1 三
口 三	FAIL SAFE： If this function is activated，it enables a function test of the photocells before any gate movement．If the test fails（photocells not serviceable signalled by value $\square 1$ I，on the display），the gate does notstartmoving． $\square \prime$＝Active ーロ ロ।＝Disabled	ー1－1
1－1 1－	PRE－FLASHING（5 s）： Activates the flashing lamp for 5 sec ．before start of movement． $\sqcup \prime=$ Active －ー ロ＝Disabled	

NB．：modification of programming parameters comes into effect immediately，whereas definitive memory storage occurs only when you exit programming and return to gate status viewing．If the equipment is powered down before return to status viewing，all modifications will be lost．
To restore the default settings of the programming disconnect terminal strip JI，press the three buttons＋，－，Fsimultaneously and keep them pressed for 5 seconds．

Display	Function	Default	Display	Function	Default
■ I	INDICATOR－LIGHT： If $1_{1}^{1} 1_{1}^{1}$ is iselected，the outputfunctions as a standard indicator－light（lighted atopening and pause，flashing atclosing，and off when gate closed）． Courtesy light：Different figures correspond to timed activation of the output，which can be used（by a relay）to power a courtesy lamp．Time can be adjusted from ！ sec．in 1 －second steps，and from $1,1 / 1$ to 1－！！min．in 10－second steps． Electric lock command（by relay）： If you press key－from the III setting，the command for the I closing electric lock is activated：			Pre－limit switch DECELERATION： You can select gate deceleration before the opening and closing limit－switches have been tripped． 0．04－second steps． If an encoder is used，the adjustment is not determined by time but by motor revs，thus obtaining greater deceleration precision． $\square I=$ Deceleration disabled 	－11
	If you press－again，the command for the に，closing and opening electric lock is set． II I I＝Standard indicator－light from I－I I to ！I．$I=$ Timed output． $I I=$ electric lock command before opening movement ロー＇＝electric lock command before opening and closing movements			Post－limit switch DECELERATION： You can select gate deceleration after the opening and closing limit－switches have been tripped． Time can be adjusted from［－｜｜1 to ニリー，in 0．02－second steps． If an encoder is used，the adjustment is not determined by time but by motor revs，thus obtaining greater deceleration precision． $\square I=$ Deceleration disabled	
E1	CLOSING PHOTOCELLS LOGIC： Select the tripping mode of the closing photocells． They operate for the closing movement only：they stop movement and reverse it when they are released，or they reverse it immediately． ㄴ́＝Reverse on release ール $=$ Reverse immediately when opening	II II		from！！ 1 to ロ！	
				PARTIAL OPENING： You can adjust the width of leaf partial opening． Time can be adjusted from［－I 1 to ニリー！in 1 －second steps． If an encoder is used，the adjustment is not	
	OPENING PHOTOCELLS LOGIC： Select the tripping mode of the opening photocells． They operate for the opening movement only：they stop the movement and restart it when they are released，or they reverse it immediately． ﹎I＝Reverse immediately when closing เー ロ＝Restart movement on release	—1 —1		determined by time but by motor revs，thus obtaining greater precision of partial opening．	
				WORK TIME（time－out）： We advise you to set a value of 5 to 10 seconds over the time taken by the gate to travel from the closing limit－switch to the opening limit－switch and＿vice versa．	1＿1 1
■1	ENCODER： If the encoder is used，you may select its presence． If the encoder is present and enabled， ＂decelerations＂and＂partial opening＂are controlled by the encoder（see relevant paragraphs）． The encoder operates as an anti－crushing device：If the gate strikes an obstacle during opening or closing，the encoder immediately reverses gate leaf movement for 2 seconds．If the encoder operates again during the 2 －seconds reversing time， it stops movement（STOP）without commanding any reversing．If no sensor is supplied，the parameter must be set on ［／II＿］．If there is the encoder，adjust the sensitivity of the anti－crushing system，by varying the parameter between $\square_{1} \quad i$ （maximum sensitivity）and 気に（minimum sensitivity）． from ！ 1 to 回！＝Encoder active and sensitivity adjustment ［	1		Adjustable from II to 回＝sec．in one－ second steps． Subsequently，viewing changes to minutes and tens of seconds（separated by a point） and time is adjusted in 10 second steps，up to a maximum value of $1-1$ ！minutes． E．g．if the display shows I．■।，work time is 2 min．and 50 sec ．	
			二1 三	ASSISTANCE REQUEST（combined with next function）： If activated，at the end of countdown （settable with the next function i．e．＂Cycle programming＂）iteffects 2 sec．ofpre－flashing at every Open pulse（job request）．Can be useful for setting scheduled maintenance jobs． I－I＝Active ーロ＝Disabled	1 ■1

Display	Function	Default
—I_	CYCLE PROGRAMMING: For setting countdown of system operation cycles. Settable (in thousands) from IIII thousand cycles. The displayed value is updated as cycles proceed. This function can be used to check use of the board or to exploit the "Assistance request".	I_l

6. START-UP

6.1. Inputs check

The table below shows the status of the LEDs in relation to to the status of the inputs.
Note the following: Led lighted = closed contact
Led off = open contact
Check the status of the LEDs as per Table.

Operation of the signalling status LEDs

LEDS	LIGHTED	OFF
OP-A	Command activated	Command inactive
OP-B	Command activated	Command inactive
FC1	Limit-switch free	Limit-switchengaged
FC2	Limit-switchfree	Limit-switch engaged
FW OP	Safetydevicesdisengaged	Safetydevicesengaged
FW CL	Safetydevicesdisengaged	Safety devicesengaged
STOP	Command inactive	Command activated
SAFE	Safetydevicesdisengaged	
ENC	Flashes while the motor rotates	

NB.:
-The status of the LEDs while the gate is closed at rest are shown in bold

- If the Encoder sensor is not installed, the ENC LED is always OFF - If you select the reverse opening direction (see par.5.1), the operation of the limit-switches is also reversed. Therefore, in closed status, the engaged limit-switch will be FC1 (LED OFF).

6.2. Installation using sliding gate operators

When you have made the connections between the 578D equipment and the on-board operator interface board, and have fitted the travel-limit plates on the rack (see operator instructions), check opening direction and limit-switch efficiency, as follows:

- Power up the system.
- Select the opening direction (see par.5.1.). If you look at the gate from the side where the operator is installed, the opening movement should be from left to right - if it is, select the standard direction, otherwise select the reverse direction.
- Set parameter EC on 00 (see parl.5.2).
- When you made the modifications, exit programming, return to inputs viewing and then power down and power up the system.
- Release the operator and, sliding the gate manually, check the efficiency of the limit-switches, controlling the status LEDs of the inputs (see par.6.1). If you look at the gate from the side where the operator is installed, the FC1 LED should go off when the stop position of the left to right movement is reached, and FC2 should go off when the stop position of the right to left movement is reached (also see fig.21).
- Lock the operator about midway along its travel.
- Give an OPEN A command and check if the gate moves in opening direction. If it does not, lock the movement and,
after cutting the power to the system, change over the wires connected to terminals of MOT-1 and MOT-2.
NOTE-For motors with an inductive sensor (746 and 844) take care over setting post-limitswitch deceleration and braking: if deceleration is too long or braking is insufficient, the plate fitted on the gate rack can go beyond the sensor until it disengages the sensor. When the gate is stopped, check if only the limit-switch involved is engaged. The relevant LED must be off. If it went off and then re-lighted, or if both the LEDs of the limit-switches are off, reduce the post-limitswitch deceleration value and/or increase braking value.

6.3. Installation using the 541 operator

When you have made the connections between the 578D equipment and the on-board operator interface board, and have adjusted the limit-switches (see operator instructions), check opening direction as follows:

- Cut power to the system.
- Release the operator and partially open the door.
-Lock the operator, power up the system again and command opening. If the door begins its closing movement, change opening direction (see Par.5.1). After you have changed it, return to viewing automated system status, and then power down and power up the equipment.
NOTE- For perfect installation of the 578D equipment, using sectional doors operator 541, take care over the following aspects:
OPENING DECELERATION: the reduction of the operator's speed during deceleration also reduces the force it can deliver. If the door is not well balanced, 541 may not be able to perform deceleration at end of opening (door with strong tendency to close) or closing (door with strong tendency to open), because the delivered force is not sufficient to overcome the imbalance. In this case, 0 must be set as the pre- and post-limitswitch deceleration value (see advanced programming in Par.5.2), because a different value could prevent the limit-switch being reached or prevent reversal of motion following tripping of the anti-crushing system.
ANTI-CRUSHING SAFETY DEVICE DURING CLOSING: although it has an Encoder sensor, the 541 operator cannot intrinsically guarantee this safety device, because it is not fitted directly on the door, but acts on the rope winding shaft. Therefore, the ENCODER sensor cannot detect any obstacle during closing. In this connection, we recommend to observe current legal regulations for protecting the lower part of the door.

7. FINAL OPERATIONS

At end of programming, run a few complete cycles to check if the automated system and the accessories connected to it are operating correctly, giving special attention to safety devices, operator thrust force adjustment, and to the anti-crushing device (Encoder sensor). Hand over the "User's guide" page (in the operator instructions) to the customer, and describe how the system works, as well as the operator release and locking operations indicated in the said guide.

Table 1/a

LOGIC"A"	PULSES						
GATE STATUS	OPEN-A	OPEN-B	STOP	OPENING SAFETY DEVICES	CLOSING SAFETY DEVICES	OP/CL SAFETY DEVICE	EDGE SAFETY DEVICE
CLOSED	Opens the leaf and closes it after pause time (1)	Opens leaf for the partial opening time and closes after pause time (1)	No effect (OPEN disabled)		No effect	No effect (OPEN disabled)	
OPEN on PAUSE	Reloads pause time (1)(3)		Stops operation	No effect (ff on part.opng. OPEN A disabled)	Reloads pause time (1) (3)	Reloads pause time (1) (OPEN disabled)	Reloads pause time (1) OPEN disabled
CLOSING	Re-opens the leaf immediately (1)			No effect (saves OPEN)	see paragraph 5.2 .	Locks and, on release, reverses to open	Reverses to open for 2" (2)
OPENING	No effect (1) (3)			see paragraph 5.2.	No effect	Locks and, on release, continues opening	Reverses to close for 2 " (2)
LOCKED	Closes the leaf (3)		No effect (OPEN disabled)	No effect		No effect (OPEN disabled)	

LOGIC"AP"	PULSES						
GATE STATUS	OPEN-A	OPEN-B	STOP	OPENING SAFETY DEVICES	CLOSING SAFETY DEVICES	OP/CLSAFETY DEVICE	EDGE SAFETY DEVICE
CLOSED	Opens the leaf and closes it after pause time	Opens leaf for the partial opening time and closes after pause time	No effect (OPEN disabled)		No effect	No effect (OPEN disabled)	
OPEN on PAUSE	Stops operation (3)		$\begin{gathered} \text { Stops } \\ \text { operation } \end{gathered}$	No effect (fif on part.opng. OPEN A disabled)	Reloads pause time (3)-OPEE disabled	Reloads pause time (OPEN disabled)	Reloads pause time - OPEN disabled
CLOSING	Re-opens the leaf immediately			No effect (saves OPEN)	see paragraph 5.2.	Locks and, on release, reverses to open	Reverses to open for $2^{\prime \prime}$ (2)
OPENING	Stops operation (3)			see paragraph 5.2.	No effect	Locks and, onrelease, continues opening	Reverses to close for $2^{\prime \prime}$ (2)
LOCKED	Closes the leat (with Closing Safety devices engoged, opens at the 2nd puse) (3)		No effect (OPEN disabled)	No effect		No effect (OPEN disabled)	

Table

LOGIC"S"	PULSES						
GATE STATUS	OPEN-A	OPEN-B	STOP	OPENING SAFETY DEVICES	CLOSING SAFETY DEVICES	OP/CLSAFETY DEVICE	EDGE SAFETY DEVICE
CLOSED	Opens leaves and closes them affer pause time	Opens leaf for the partial opening time and closes after pause time	No effect (OPEN disabled)		No effect	No effect (OPEN disabled)	
OPEN on PAUSE	Re-closes the leafimmediotely (3)		$\begin{aligned} & \text { Stops } \\ & \text { operation } \end{aligned}$	No effect (ffon part.opng. OPEN A disabled)	Onrelecse, closesofferis"(OPENdisableo)(3)	On release, closes after 5 "(OPEN disabbed)	Reloads pause time (1) OPEN disabled
CLOSING	Re-opens the leaf immediately			No effect (soves OPEN)	see paragraph 5.2.	Locks and, onrelease, reversesto open	Reverses to open for $2^{\prime \prime}$ (2)
OPENING	Re-closes the leaf immediately (3)			see paragraph 5.2.	No effect (saves OPEN)	Locks and, on release, continues opening	Reverses to close for 2" (2)
LOCKED	Closes the leaf (3)		No effect (OPEN disabled)	No effect		No effect (OPEN disabled)	
Table 1/d							
LOGIC"E"	PULSES						
GATE STATUS	OPEN-A	OPEN-B	STOP	OPENING SAFETY DEVICES	CLOSING SAFETY DEVICES	OP/CLSAFETY DEVICE	EDGE SAFETY DEVICE
CLOSED	Opens the leaf	Opens leaf for the partiol opening time	No effect (OPEN disabled)		No effect	No effect (OPEN disabled)	
OPEN	Re-closes the leaf immediately (3)		$\begin{aligned} & \text { Stops } \\ & \text { operation } \end{aligned}$	No effect (ff on part.0png. OPEN A disabled)	No effect (OPEN disabled) (3)	No effect (OPEN disabled)	
CLOSING	Re-opens the leafimmediotely			No effect (saves OPEN)	see paragraph 5.2.	Locks and, on release, reversesto open	Reverses to open for $2^{\prime \prime}(2)$
OPENING	Stops operation (3)			see paragraph 5.2.	No effect	Locks and, onrelease, continues opering	Reverses to close for $2^{\prime \prime}$ (2)
LOCKED	Closes the leaf (with Closing Safety devices engaged, opens at the 2nd pulse) (3)		No effect (OPEN disabled)	No effect		No effect (OPEN disabled)	

Table 1/e

LOGIC "C"	CONTROLS ALWAYS HELD DOWN		PULSES				
GATE STATUS	OPEN-A (opening)	OPEN-B (closing)	STOP	OPENING SAFETY DEVICES	CLOSING SAFETY DEVICES	OP/CLSAFETY DEVICE	EDGE SAFETY DEVICE
CLOSED	Opens the leaf	No effect (OPEN-A disabled)	No effect (OPEN-A disabled)	No effect (OPEN-A disabled)	No effect	$\begin{gathered} \text { No effect } \\ \text { (OPEN-A disabled) } \end{gathered}$	No effect (OPEN-A disablea)
OPEN	No effect (OPEN-B disabled)	Closes the leaf	$\begin{gathered} \text { No effect } \\ \text { (OPEN-A/B disabled) } \end{gathered}$	No effect (OPEN-A disabled)	$\begin{gathered} \text { No effect } \\ \text { (OPEN-B disabled) } \\ \hline \end{gathered}$	$\begin{gathered} \text { No effect } \\ \text { (OPEN-B disabled) } \\ \hline \end{gathered}$	No effect(OPEN-A/B disabled)
CLOSING	Stopsoperation		Stops	No effect	Stops operation (OPEN-B disabled)	Stops operation (OPEN-A/B disabled)	Reverses to open for $2^{\prime \prime}$ (2)
OPENING		Stops operation	operation	Stops operation (OPEN-A disabled)	No effect	Stops operation (OPEN-A/Bdisabled)	Reverses to close for $2^{\prime \prime}$ (2)
Table 1/g							
LOGIC "B"				PULSES			
GATE STATUS	OPEN-A (opening)	OPEN-B (closing)	STOP	OPENING SAFETY DEVICES	CLOSING SAFETY DEVICES	OP/CLSAFETY DEVICE	EDGE SAFETY DEVICE
CLOSED	Opens the leaf	No effect	No effect (OPEN-A disabled)	No effect (OPEN-A disabled)	No effect	No effect (OPEN-A disabled)	No effect (OPEN-A disabled)
OPEN	No effect	Closes the leaf	No effect (OPEN-B disabled)	No effect	No effect (OPEN-B disabled)	No effect (OPEN-B disabled)	No effect (OPEN-A/B disabled)
CLOSING	Reverses to open	No effect	Stops	No effect (saves OPEN A)	Stops operation (OPEN-B disabled)	Stops operation (OPEN-A/B disabled)	Reverses to open for $2^{\prime \prime}$ (2)
OPENING	No effect	No effect	operation	Stops operation (OPEN-A disabled)	No effect	Stops operation (OPEN-A/Bdisabled)	Reverses to close for $2^{\prime \prime}$ (2)
LOCKED	Opens the leaf	Closes the leaf	No effect (OPEN-A/B disabled)	$\begin{gathered} \text { No effect } \\ \text { (OPEN-A disabled) } \\ \hline \end{gathered}$	No effect (OPEN-B disabled)	$\begin{gathered} \text { No effect } \\ \text { (OPEN-A/Bdisabled) } \end{gathered}$	No effect (OPEN-A/B disabled)

(1) If maintained, it prolongs the pause until disabled by the command (timer function)
(2) If a new pulse occurs within 2 seconds after reversing, it immediately stops operation. (3) During the partial opening cycle, an OPEN A pulse causes total opening.

NB.: Effects on other active pulse inputs in brackets.

