

CE DECLARATION OF CONFORMITY FOR MACHINES
 (DIREC TIVE98/37/EC)

Manufacturer: FAAC S.p.A.
Address: Via Benini, 1-40069 Zola Predosa BOLOGNA - ITALY
Declares that 940 SMA - SMAD mod. operator

- is built to be integrated into a machine or to be assembled with other machinery to create a machine under the provisions of Directive 98/37/EC;
- conforms to the essential safety requirements of the following EEC directives:

73/23/EEC and subsequent amendment 93/68/EEC.
89/336/EEC and subsequent amendment 92/31/EEC and 93/68/EEC
and also declares that it is prohibited to put into service the machinery until the machine in which it will be integrated or of which it will become a component has been identified and declared as conforming to the conditions of Directive 98/37/EC.

Bologna, 01 J anuary 2003
The Managing Director

WARNINGS FOR THE INSTAUER
 general safty obug atons

1) CAUIION! Itis important forpersonal safety to follow all the instructions carefully. Incomect installation or misuse of the product may cause people seriousham.
2) Read the instructionsc a refully before starting to install the product.
3) Packaging material(plastic, polystyrene,etc.) mustnotbe leftwithin reach ofchildren asitisa potentialsource ofdanger.
4) Keep the instructions forfuture reference.
5) Thisproductwasdesigned and manufactured strictly forthe use indic ated in thisdocumentation. Anyothernotexpressly indic ated use maydamage the productand/orbe a source ofdanger.
6) FAAC acceptsno responsibility due to improperuse of the a utomated system oruse otherthanthatintended.
7) Do not install the equipment in an area subject to explosion hazard: infla mmable gasesorfumesare a serioussa fety hazard.
8) The system mustbe camied out in compliance with the following Sta ndards: EN 12604, EN 12605, EN 12453, EN 12445. To obta in a n a dequate level of safety in non EU countries, the above mentioned Standards must be observed in addition to nationalStandards.
9) FAAC will notacceptresponsibility ifthe princ iplesof Good Workmanship are disregarded in construc ting the closing elementsto be motorised, and if any deformation oc cursduring use of the said elements.
10) Before ca mying outany workon the system, switc h off the powersupply.
11) The mainspower supply of the a utomated system mustbe fitted with a allpole switc h with contactopening distance of 3mmorgreater. Use ofa 6A themalbreakerwith all-pole circ uit breakisrec ommended.
12) Make sure there isa differential switc h with 0.03 A threshold upstrea m of the system.
13) Checkthatthe earthing system iscorrectly made and connectthe closure metalpartsto it.
14) The a utomated system inc ludesan intrinsic anti-c rushing devic e consisting of a torque control which, however, mustbe installed togetherwith other safety devices.
15) The safety devices(EN 12978 Standard) protect any dangerous areas aga inst Mec hanic al movementrisks, such ascrushing, dragging, and shearing.
16) A wa ming sign a dequately fitted on the lea ves, in add ition to the devices mentioned underpoint"15", mustbe used foreach system.
17) FAAC acceptsno responsibility rega rding sa fety a nd correctoperation of the automated system, should componentsmade by manufa c turers otherthan FAAC be used in the system.
18) Use only FAAC originalspare partsfor maintenance.
19) Do notmake a nyalterationsto the componentsofthe automated system.
20) The insta llershall supply full information regarding manualoperation of the system in case of a nemergency.
21) Do notallow child ren orotherpersonsto sta nd nearthe productwhile in operation.
22) Keep remote controls or any other pulse generator well away from children, to prevent the automated system from being activated accidentally.
23) The user must refrain from attempting to repair or adjust the system personally and should contactqualified personnelonly.
24) Anything notexpressly provided forin these instruc tionsisnotpermitted.

KEY 10 PRORLES

(1) SUPPORTPRORLE
(2) PREI STANDING PRORLE
(3) HOUSNG PROFLE
(4) SUDING PRORLE
(5) CLOSNG PROFLE FOR FREE-STANDING AUIOMATED SYSTEM
(6) LEAFATIACHMENTPRORLE
(7) LEAFBOTIOM PROFLE
(8) GRIPPER FORGLASSLEAVES
(9) BOTIOM SUDING BLOCKFORGLASSLEAF

Fig. 1

Fig. 2

Fig. 3

940SMA-SMAD SERJESAUIOMATIC DOORS

2. DESC RIPIION AND TEC HNICALSPECIRCATIONS

With the FAAC series 940 SM systems, single- or double-leaf sliding doors can be automatic ally activa ted, managed and controlled
The FAAC series 940 automated systemsare supplied fully assembled, wired and tested in the configuration requested by the customeron the orderform, orsupplied asa kit. An a utomation head profile (fig.1) consistsof the following parts:

Head profile(fig. 1 ref.(1)
The progilesin extruded a luminium, used forthe different head profile models(tab.1) come in two versions:

Profile SM (fig. 2 ref.(1)
This is the support profile which is used when the head profile can be entirely fitted on a bearing structure. The profile's sliding trackiscoated with a special plastic material which, in addition to protec ting the aluminium profile aga inst wear, ensuressilentoperation with a very low fric tion coeffic ient.

Profile SMA (fig. 3 ref.(1)
Thisconsists of a support profile (SM) a nd a notherprofile (A) provid ing the free-standing charac teristic.
The head profile can be secured at the two ends, using the "Sid e fixing bracketskit".
The free-standing profile secured at the endsisguaranteed up to a maximum lenght of 3.000 mm -forgreaterlenghts, the head profile must be secured at its intermediate pointstoo, using the appropriate slots.

Leafsupportc amiages(fig. 1 ref.(2))
The ca riages are provided with two wheelson ball bearings, a counter wheel on the lowerpart, and a screw system for adjusting leaf height.

Motor/transfomerunit(fig. 1 ref. (3)
The DC motor issupplied with an encoderand a leaf locking system (ac cessory).

Motor(fig. 1 ref.(11)
Control unit(fig. 1 ref. (4))
When the microprocessorcontrolunit ispowered up, it exec utesan initial lisation process of the door'sfunctional parameters.

Transfomer(fig. 1 ref. (12)
Opening mechanic alstop (fig. 1 ref. (5)
Transmission pulley unit(fig. 1 ref. (6)
Drive chain (fig. 1 ref. (10)
Sec ond motor(fig. 1 ref. (7))

3. ACCESSORIES

FAAC hasthree groupsof artic lescomplementing the insta llation of the automatic door.

3.1 Supplied ac cessories for the head profile

These are the artic leswhich, following a request on the order form, are assembled on the head profile directly by FAAC.
These a ccessories, which c an be, if nec essary, installed la ter on, are asfollows:

Fronthousing (figs. 2 and 3 ref. (2))
The front housing is a vailable in naturaloranodised aluminium. The side panelsfully enc lose the system.

Motor lock unit

The motorlock unit guarantees mec hanical loc king of the doorin any position. A single type of motor lockisused for eithersingle-ordouble-leaf applications.

The motorlock is sup plied with an intemal release device (fig 1 ref. (9) enabling emergency opening if necessary; it is also designed forinstallation of the extemalrelease (paragraph 3.2 key push-buttons T21EF and T21IF). The motor lock unit acts directly on the motorby locking it mecha nic a lly.

Motorlockcontrol

Thiscontrolsifthe motorlockoperating effic iently and checksif the doorhasactually closed. Ifnecessary, the systemisd esigned for remote activation of an indic ator-lightorbuzer.

Emergency batteries(fig. 1 ref. (9)
In the event of a mainspowercut, on-battery operation providesa range of 30 minutesat 100% use frequenc y.
The battery charge statustest is automatic and indic ated by a LED.
The charge controlboard isdesigned forremote activation of a 'battery operating' signal.

Pairofside fixing brackets(fig. 15)

3.2 Supplementary ac cessories

These are the peripheralaccessoriesforcompleting the a utoma ted system.

-Miniswitch photocells

-T20E: outdoorkey-operated selectorswitch
-T201 : flush-fitting key-operated selec torswitch
-T21EF: Outdoorkey-operated selectorswitch designed for motorrelease
-T21IF: Rush-fitting key-operated selectorswitch designed for motorrelease
-Detection sensors.
-SD Keeper

3.3 Doorfiame accessories

To facilitate adapting the doorframe profile to the carriages and to enable corect finishing of the installation, FAAC offers the following seriesofa rtic les:

Closing profile forfree-standing facility (fig. 3 ref. (3))
Available in natural a nd anodised aluminium versions, the profile isused forclosing the space between the mobile leaf and the wallon which the head profile is secured.

Brush forclosing profiles (figs. 2 and 3 ref. (4)
Preventsdust reaching inside the head profile.
Pairofsliding blocks(fig. 17 ref.2)
Supplied asa pair, they can be secured to the wall (or on the stationary leaf) ordirectly on the floor.

Bottom track profile (fig. 17 ref. (1))
Allows the bottom leaf profile to a dapt to the sliding block mentioned above.

Brush forbottom track profile (fig. 17 ref. (3)
This completesthe on-ground tracksystem.
Leafattachmentprofile(fig. 20 ref. (3)
Allows the top leaf profile to adapt to the carniage attachments.

Pairofbottom sliding blocksforglass leaf
They ena ble the glassleavesto slide.

4. HEAD PROFLE CONFGURATION

To correctly position the head profile parts,referto the dimensionsin figuresfrom 4 to 9 .

940 SMA Right opening

$\mathbf{V p}$	\mathbf{L}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{I}
$\mathbf{7 0 0}$	1500	490	335	1870	865
$\mathbf{8 0 0}$	1700	590	535	2070	965
$\mathbf{9 0 0}$	1900	690	635	2270	1065
$\mathbf{1 0 0 0}$	2100	790	735	2470	1165
$\mathbf{1 1 0 0}$	2300	890	835	2670	1265
$\mathbf{1 2 0 0}$	2500	990	935	2870	1365
$\mathbf{1 3 0 0}$	2700	1090	1035	3070	1465
$\mathbf{1 4 0 0}$	2900	1190	1135	3270	1565
$\mathbf{1 5 0 0}$	3100	1290	1235	3470	1665
$\mathbf{1 6 0 0}$	3300	1390	1335	3670	1765
$\mathbf{1 7 0 0}$	3500	1490	1435	3870	1865
$\mathbf{1 8 0 0}$	3700	1590	1535	4070	1965
$\mathbf{1 9 0 0}$	3900	1690	1635	4270	2065
$\mathbf{2 0 0 0}$	4100	1790	1735	4470	2165
$\mathbf{2 1 0 0}$	4300	1890	1835	4670	2265
$\mathbf{2 2 0 0}$	4500	1990	1935	4870	2365
$\mathbf{2 3 0 0}$	4700	2090	2035	5070	2465
$\mathbf{2 4 0 0}$	4900	2190	2135	5270	2565
$\mathbf{2 5 0 0}$	5100	2290	2235	5470	2665
$\mathbf{2 6 0 0}$	5300	2390	2335	5670	2765
$\mathbf{2 7 0 0}$	5500	2490	2435	5870	2865
$\mathbf{2 8 0 0}$	5700	2590	2535	6070	2965
$\mathbf{2 9 0 0}$	5900	2690	2635	6270	3065
$\mathbf{3 0 0 0}$	6100	2790	2735	6470	3165

$\mathrm{Vp}=$ Free transit space
$\mathrm{Lt}=$ Head profile length
$B=$ Sec uring distance of carriageson sliding leaf
C =Motorpositioning dimension
D =Length of transmission belt
I =Motor/ transmission unitd istance

$\mathbf{V p}$	\mathbf{L}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{I}
$\mathbf{8 0 0}$	1700	225	82,5	2710	1285
$\mathbf{9 0 0}$	1900	275	132,5	2910	1385
$\mathbf{1 0 0 0}$	2100	325	182,5	3110	1485
$\mathbf{1 1 0 0}$	2300	375	232,5	3310	1585
$\mathbf{1 2 0 0}$	2500	425	282,5	3510	1685
$\mathbf{1 3 0 0}$	2700	475	332,5	3710	1785
$\mathbf{1 4 0 0}$	2900	525	382,5	3910	1885
$\mathbf{1 5 0 0}$	3100	575	432,5	4110	1985
$\mathbf{1 6 0 0}$	3300	625	482,5	4310	2085
$\mathbf{1 7 0 0}$	3500	675	532,5	4510	2185
$\mathbf{1 8 0 0}$	3700	725	582,5	4710	2285
$\mathbf{1 9 0 0}$	3900	775	632,5	4910	2385
$\mathbf{2 0 0 0}$	4100	825	682,5	5110	2485
$\mathbf{2 1 0 0}$	4300	875	732,5	5310	2585
$\mathbf{2 2 0 0}$	4500	925	782,5	5510	2685
$\mathbf{2 3 0 0}$	4700	975	832,5	5710	2785
$\mathbf{2 4 0 0}$	4900	1025	882,5	5910	2885
$\mathbf{2 5 0 0}$	5100	1075	932,5	6110	2985
$\mathbf{2 6 0 0}$	5300	1125	982,5	6310	3085
$\mathbf{2 7 0 0}$	5500	1175	1032,5	6510	3185
$\mathbf{2 8 0 0}$	5700	1225	1082,5	6710	3285
$\mathbf{2 9 0 0}$	5900	1275	1132,5	6910	3385
$\mathbf{3 0 0 0}$	6100	1325	1182,5	7110	3485

$\mathrm{Vp}=$ Free transit space
Lt = Head profile length
$B=$ Securing distance of camia geson slid ing leaf
C = Motorpositioning dimension
$\mathrm{D}=$ Length of transmission belt
I=Motor/transmission unit distance

Fig. 6

$\mathbf{V p}$	\mathbf{L}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{I}
$\mathbf{7 0 0}$	1600	490	420	2040	950
$\mathbf{8 0 0}$	1800	590	435	2240	1050
$\mathbf{9 0 0}$	2000	690	535	2440	1150
$\mathbf{1 0 0 0}$	2200	790	635	2640	1250
$\mathbf{1 1 0 0}$	2400	890	735	2840	1350
$\mathbf{1 2 0 0}$	2500	990	835	2870	1365
$\mathbf{1 3 0 0}$	2700	1090	935	3070	1465
$\mathbf{1 4 0 0}$	2900	1190	1035	3270	1565
$\mathbf{1 5 0 0}$	3100	1290	1135	3470	1665
$\mathbf{1 6 0 0}$	3300	1390	1235	3670	1765
$\mathbf{1 7 0 0}$	3500	1490	1335	3870	1865
$\mathbf{1 8 0 0}$	3700	1590	1435	4070	1965
$\mathbf{1 9 0 0}$	3900	1690	1535	4270	2065
$\mathbf{2 0 0 0}$	4100	1790	1635	4470	2165
$\mathbf{2 1 0 0}$	4300	1890	1735	4670	2265
$\mathbf{2 2 0 0}$	4500	1990	1835	4870	2365
$\mathbf{2 3 0 0}$	4700	2090	1935	5070	2465
$\mathbf{2 4 0 0}$	4900	2190	2035	5270	2565
$\mathbf{2 5 0 0}$	5100	2290	2135	5470	2665
$\mathbf{2 6 0 0}$	5300	2390	2235	5670	2765
$\mathbf{2 7 0 0}$	5500	2490	2335	5870	2865
$\mathbf{2 8 0 0}$	5700	2590	2435	6070	2965
$\mathbf{2 9 0 0}$	5900	2690	2535	6270	3065
$\mathbf{3 0 0 0}$	6100	2790	2635	6470	3165

$\mathrm{Vp}=$ Free transit space
Lt =Head profile length
$B=$ Sec uring distance of c a mia geson sliding leaf
C =Motorpositioning dimension
$\mathrm{D}=$ Length of transmission belt
I=Motor/sec ond motordistance

940 SMAD Left opening

$$
\begin{gathered}
\text { If } 700 \leq V p \leq 1100 \text { then } \\
L t=V p \times 2+200 \\
\text { If } V p>1100 \text { then } \\
L t=V p \times 2+100
\end{gathered}
$$

Fig. 8

$\mathbf{V p}$	\mathbf{L}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{I}
$\mathbf{7 0 0}$	1600	480	440	2100	980
$\mathbf{8 0 0}$	1800	590	485	2300	1080
$\mathbf{9 0 0}$	2000	690	585	2500	1180
$\mathbf{1 0 0 0}$	2200	790	685	2700	1280
$\mathbf{1 1 0 0}$	2400	890	785	2900	1380
$\mathbf{1 2 0 0}$	2500	990	885	2870	1365
$\mathbf{1 3 0 0}$	2700	1090	985	3070	1465
$\mathbf{1 4 0 0}$	2900	1190	1085	3270	1565
$\mathbf{1 5 0 0}$	3100	1290	1185	3470	1665
$\mathbf{1 6 0 0}$	3300	1390	1285	3670	1765
$\mathbf{1 7 0 0}$	3500	1490	1385	3870	1865
$\mathbf{1 8 0 0}$	3700	1590	1485	4070	1965
$\mathbf{1 9 0 0}$	3900	1690	1585	4270	2065
$\mathbf{2 0 0 0}$	4100	1790	1685	4470	2165
$\mathbf{2 1 0 0}$	4300	1890	1785	4670	2265
$\mathbf{2 0 0}$	4500	1990	1885	4870	2365
$\mathbf{2 3 0 0}$	4700	2090	1985	5070	2465
$\mathbf{2 4 0 0}$	4900	2190	2085	5270	2565
$\mathbf{2 5 0 0}$	5100	2290	2185	5470	2665
$\mathbf{2 6 0 0}$	5300	2390	2285	5670	2765
$\mathbf{2 7 0 0}$	5500	2490	2385	5870	2865
$\mathbf{2 8 0 0}$	5700	2590	2485	6070	2965
$\mathbf{2 9 0 0}$	5900	2690	2585	6270	3065
$\mathbf{3 0 0 0}$	6100	2790	2685	6470	3165

$\mathrm{Vp}=$ Free transit space
Lt = Head profile length
$B=$ Sec uring distance of c a ma geson sliding leaf
C =Motorpositioning dimension
D =Length of transmission belt
I=Motor/sec ond motordistance

5. INSTALATION

$H A=(L H-15,4 m m) \pm 10$

Fig. 10

$$
\mathrm{HA}=(\mathrm{L}-15,4 \mathrm{~mm}) \pm 10
$$

Fig. 11

6. SECURING THE HEAD PRORIE

The free-standing profile isused when the head profile ca nnnot be fully fixed to a bea ring structure.

Free-standing profile - securing it to the wall

- Make the holeson the free-standing profile in the position indic ated in fig. 15 ref. (3).
- Esta blish the exactloc ation of the free-sta nding profile consid ering the overall dimensionsin figs. 10 a nd 11. The head profile must be fixed parallelto the floor.
-Secure the free-sta nding cross-piece at one end. Lift the cross-piece and levelit parallel to the floor. Sec ure the other end.
Ca my out the rema ining fixing operations(fig. 12).

Free-standing profile - sec uring with side brackets

The a utomation head profile with the free-sta nding profile can be sec ured at the two ends by using the side brackets accessory(fig.15).

- Establish the exact loc ation of the head profile considering the overalldimensions of figs. 2 and 3.
-Assemble the bearing profile on the free-sta nding profile, inserting the tie-rods; screw the nutswithouttightening them. Secure the side plateson the head profile asfollows:
- Position the small pates in the ir seats a nd sec ure the side plateswith the three M6fixing screws(fig. 13 ref. (1)
-Tighten the tie-rods in their seats with the relevant nuts.
- Secure the side platesusing a dequate expansion plugs (not supplied) and, if nec essary, use shimsforthe spacesE(fig. 14). Intermediate fasteningsmay be necessary (on wall oron ceiling asthe case may be) according to the lenght of the head profile:
from 3 to 4 m a central fastening isnecessary; from 4 to $6,1 \mathrm{~m}$ two intermedia te fasteningsa re necessary. In a ny event, we advise you to sec ure the centre also for lenghtsshorterthan 3 m .
- If using the closing profile fora free-standing automated system, assemble it asshown in fig. 15 ref. (1).

ATIENTION: insert the brush (a ccessory fig. 15 ref. (2) in the closing profile ofthe free-standing automated system before installing.

6.1 Installation of side panels

- Fit the side panelsasshown in figures 15.

Fig. 12

Fig. 13

Fig. 14

7. INSTAUATION OF BOTIOM SLIDING BLOCKS

The bottom sliding blocksare designed forsecuring to the wall (orstationary leaf) orto the floor.

Sec uring on the wall (oron stationary leaf):

- Assemble the sliding blocks, considering in mind the dimensions in figs. 17 a nd 19.
Forthe free-standing version, we a dvise you to use the slid ing block in fig. 19.
- Secure the sliding blocksasshown in fig. 18. ref. (1).

Sec uring on the floor

- Secure the sliding block direc tly to the floor, a sshown in fig. 18. ref. (2), using adequate expansion plugsand screws.

Fig. 18

Fig. 19

8. INSTALATION OF THE LEAVES

-Fit the leaf attac hment profile (a ccessory fig. 20 ref. (3) on the top of the leaf, using adequate screws.

- Secure the leaf on the relevantc a miages, using the supplied plates(fig. 20 ref. (1) and screws(fig. 20 ref. (2)).
- Position the ca rriagesof the a utomated system asshown in figuresfrom 4to 9 .
-Tighten the sc rewsof the carriages.

8.1 Leafadjustment

The ca miagesenable height a djustment of the leaves. Adjustment procedure:

- Slightly loosen the two hexa gon head sc rewsin fig. 21 ref. (1).
- Tum the screw (fig. 21 ref. (2) clockwise to raise the leavesor anti-clockwise to lowerthem.
-Re-tighten the screws.

8.2 Adjustmentof the counterroller

The ca miages are supplied with a counterwheel. Adjustment procedure below:

- Loosen the two hexagon head screws(fig. 21 ref (3) and (4)).
- Slide the screw fig. 21 ref. (4) inside the slot, so that, while the ca miage ismoving, the counterwheelslid eson the profile withoutjamming.
Check if the wheel can be locked without stopping the camiage.

9. ADJ USTMENTOFTHE TRAVELSTOP UMITS

Adjustmentofthe opening mechanic alstops

The 940 SM seriesdoorsare supplied with the opening mechanic alstopsmounted on the slid ing profile.
Make sure that, when the leaves are being opened, the sliding carriagessimulta neously rea ch the opening travellimit mechanicalstops.
If a djustmentsa re necessary, proceed asfollows:

- Take the leave into opening position.
- Loosen the two hexa gon head screws asshown in figures22 and 23 ref. (1).
- Take the mechanicalstop toward the carriage until the two partscome into contact.
-Tighten the two hexagon head screws.

Adjustmentofthe closing mec hanic al stop.

The 940 SM seriesdoors are supplied with the ca miages reaching theirtra ve stop limit on the closing ed ge (fig.24). If the doorcentre hasto be adjusted, proceed asfollows: - Loosen the fixing screws(fig. 24 ref. (1)) of the carriage in question. Ta ke the ca miage toward the limit stop until the two partsare in contact.
-Tighten the c a mia ge'sfixing sc rews.

Fig. 22

Fig. 23

Fig. 24

10. BELTADJ USTMENT

Check if the belt is too slackortaut.
Belttension a djustmentproc edure:

- Loosen the nut (fig. 25 ref. (1).
- Screw the bolt of fig. 25 ref. (2) to exert tension on the belt or unscrew it to slacken the belt.
-When you have adjusted tension, tighten the nut (fig. 25 ref.
(1).

To adjust belttension fortwin-motordoors, proceed asfollows: -Slightly loosen the fourfixing sc rews(fig. 26 ref.(1)) of the second motor.

- Push the motor unit outwardsusing a hammerasshown in fig. 26.
-When you have adjusted tension, tighten the four screws.

Fig. 26

11. INSTALATION OF HOUSING FIXING BRACKEIS

- Fit a housing fixing bracket at the end of the head profile, opposite the motorunit, using the supplied screwsand plates (fig.27).
-Fit the second housing fixing bracketslightly off-centre of the head profile, to enable you to make the door-centre adjustments.
- Secure the bracketsupporting the intemal release knob to the otherend of the head profile (on the motor unit side), as shown in fig. 28.
The support bracket of the intemal release knob must always be installed, even if the motorlockisnot used.

12. MOTORLOCK

The motorlockis device guaranteeing the leavesare locked when closed.Installation procedure:

- Secure the motorlock with the two supplied boltsasshown in fig. 29 ref. (1).
-Manually push the lever(fig. 30 ref. (1)) toward the motor shaft, checking forcorrect meshing asperfig. 30 ref. A.
- Move the lever(fig. 30 ref. (1)) vertic a lly a nd check if there is play between the motor-shaft a nd motor-lockcoupling.

Fig. 29

Fig. 30
If there is no play on the coupling, proceed asfollows: -Loosen the two screws(fig. 31 ref. (1) on both ca mia ges.

- Slig htly move the belt ho rizontally until the levermoves smoothly; tighten the sc rewson the carriages.

Fig. 31

12.1 Installation of intemal release knob

- Assemble the release knob asindic ated in fig. 32 ref. (1).
- Press the contrast washeruntil it fits in the relea se knob.
- Screw the adjuster, with the relevant locknuts, on the intemal part of the bracket (fig. 32 ref. (2)).
- Fit the cable inside the adjuster, threading it through the washer and the release knob.
- Sec ure the steel cable with the cable gland and the appropriate screw (fig. 32 ref. (3).
- Pull the cable up to the cable gland stop inside the knob
-Take the cable sheath a gainst the a djuster (fig. 32 ref. (4).

12.2 Motorlock adjustment

- Fully sc rew the adjuster on the bracket.
- Pull the knob and rotate it through 90° so that it lockson the bracket.
-Thread the cable (fig. 33 ref. (1)) inside part (2) , leaving the sheath at its limit stop.
-Fit the ca ble on the terminal (fig. 33 ref. (3).
-Pull part(4) to itslimit stop (compressing the springs) and tighten the screw of the terminal(3), thussec uring the steel cable.
- Make sure that the motorlockcoupling isclearof the motor shaftc oupling (fig. 30 ref. B).
-If a djustments are required, tum the knob bracket adjuster.
- Release the knob rotating it through 90° a nd checkif the release iseffic ient.

Fig. 33

13. HTIING THE HOUSING

-Fit three spacers(fig. 34 ref(1))on the outeredge of the support profile, positioning them at the endsand at the centre.

Fig. 34

- Lay the housing on the spacers.
-To keep the housing open, lift it and push it toward the profile until the metal projection fits into the profile seat (fig. 35 ref.(1).
- Fasten the 'parachute' cableson the housing and on the housing fixing bracketsas shown in fig. 35 ref. (2).
-The housing is secured on the bracketswith the appropriate hooks(fig. 36).
- Breakoffthe excesslowerhousing profile with a pa irof pliers (fig. 36 rif. (1).
N.B.: To ensure correctclosure of the housing, if using the internal release, shape the housing to the dimensionsin fig. 37.

Fig. 37

14. INSTALATION OF CABLE SLEEVES

Fit the supplied cable sleevesparallel to the profile (fig. 38 ref. (1)) and then tum them by 90° to secure them (fig. 38 ref. (2)).

Fig. 38

15. INSTALATION OF BUFFER BATIERIES

Insta II the bufferb atteriessupport on the support profile using the supplied platesand screws(fig. 39).

Fortwin-motordoors, house the bufferb atteriesinside the transformerenclosure (fig. 44 ref. (1)).

16. INSTALATION WITH G RIPPERS FOR GLASS IEAVES

To install with the glassleavesgrip pers, referto the dimensions in figure 40.

17. STARI-UP

-To remove the protective coverof the SDM controlunit, delic ately obta in leverage with a screwdriverasshown in fig. 41.
-To refit it, attach it on the top part and press as shown in fig. 42.
-To remove the motorunit'scover, loosen the screws.

- Manually check correct movement of the lea vesand all moving elements.
- Make/checkallelectric al connectionson the SDM board of the powerc ablesfrom the toroidaltransformer, from the motor and from allaccessories-routing the cablesinside the prefitted cable sleeves.
- Setmotordirection of rotation a c cord ing to type of door (referto the instructionsof the SDM board).
-Check if a jumperispresent on terminal board J 7 of the SDM board (referto the SDM board).
- Connect the 230 V powercablesto the termina ls inside the tra nsfo rmerunit (figs. 43 a nd 44 ref. (1)).
Note: a 1A time-delay fuse is also supplied to protect the transformer.
- Set automatic operating mode and execute setup.
- Check the effic ienc y of allinsta lled a c cessories, especially photocellsand sensors.

Fig. 41

Fig. 43

940SDM CONTROL BOARD

SECOND MOTOR CONTROL BOARD

LED	ON	OFF
MAIN	220V~ mains ON	220V~ mains OFF
\mathbf{V} MOT	motor powered up	motor powered down
$\mathbf{2 4 V}$	$+24 V$ ON	$+24 V$ OFF

PUSH-BUTION	MEANING
SEIUP	inactive
SP-DOWN	inactive
SP-UP	inactive

CONNECTOR	MEANING
$\mathbf{\mathbf { 1 }}$	transformer 40V secondary winding
$\mathbf{\mathbf { 2 }}$	Connector to J1 of 940SDM
$\mathbf{\mathbf { 3 }}$	connector to J2 of 940SDM
$\mathbf{\mathbf { 4 }}$	transformer 24V secondary winding
$\mathbf{\mathbf { 5 }}$	connector to J9 of 940SDM
$\mathbf{\mathbf { 6 }}$	second motor quick-fit connector
$\mathbf{\mathbf { 7 }}$	not used
$\mathbf{\mathbf { 8 }}$	RS232 serial port for PC connection
$\mathbf{\mathbf { 9 }}$	NOTAUS emergency stop (NC contact)
$\mathbf{\mathbf { 1 0 }}$	connector to J3 of batteries board

DS1	MEANING
Dip n ${ }^{\circ} 1$	to be always positioned to OFF
Dip n ${ }^{\text {2 }}$	posizionare sempre in OFF
FUSE	MEANING
F1	fuse $5 \times 20 \mathrm{~T} 6.3 \mathrm{~A} / 250 \mathrm{~V}$ (motor protection)
F2	fuse $5 \times 20 \mathrm{~T} 1 \mathrm{~A} / 250 \mathrm{~V}$ (24V protection)

S/P LED STATUS	MEANING
OF	normal operating status
$\mathbf{O N}$	no connetting to 940SDM board

INSTALLING SECOND MOTOR BOARD

The assembled 940 twin-motor doors a re supplied with pre-wired second-motor board.For Kit doors, fit the second board using the spacers provided and positioning them on the 940SDM board to correspond to the holesas shown in fig. 1 rif. (1). Wire up the two units using the cablesprovided and following the diagram in fig. 2.

NOTE: Photocell inputs in connection diagramsare considered NC contacts (default c onfiguration).

CONNEC TION OF PHOTOCEISWTH FAILSAFE DISABLED (DEFAULT)		
no photocell	1 pair of photocells	2 pairs of photocells

CONNECTION OF PHOTOCEUSWTTH FAILSAFE ENABLED		
no photocell	1 pairof photocells	2 pairs of photocells

ENG USH

ENGUSH

DESCRIPTION OF TERMINALS

TERMINAL BOARD J5

1 RESET (NO contact)

Contact closure exec utes the Reset procedure.
Reset is the function for restoring normal operating conditions after some types of alarm.
2-5-8-11 - (COM)
Negative for powering accessories (+24V and +Vacc) and common forcontacts

3 EMERG2 (NO default contact)

Emergency command:
in the standard setting, activation causes the door to open (the door staysopen foraslong asthe command is activated).
By using SD-Keeper+Display, you can program the operation of this input differently (see programming instructions).

4
EMERG1
(NO default contact)
Emergency command:
in the standard setting, activation causes the door to stop (the door stays in stop status for as long as the command isactivated).
By using SD-Keeper+Display, you can program the operation of this input differently (see programming instructions).

6
-FAILSAFE
Negative for powering photocell projectors when the FAILSAFE function is a ctivated (programmable from SDKeeper+Display).
7-14 +VACc
+24V power supply for accessories.
The total maximum load of the accessoriesconnected to the " +V Acc" and "" +24 V " inputs, must not exceed 700 mA .
© While operating on the battery in the absence of mains power, when the battery charge dropsto a critic al level, Va cc is intemupted for energy saving purposes.
9
PSW2 (NC default contact)
Input of 2nd safety photocell
By using SD-Keeper+Display , you can :

- program the NO contact,
- cut out this input if there are no photocells or if there is only one photocell (which must therefore be connected to the PSW1 input).
For the effects the tripped photocell has on this input, see PSW1.

10

PSWI (NC default contact)
Input of 1st safety photocell
By using SD-Keeper+Display, you can :

- program the NO contact,
- cut out this input if there are no photoc ells.

Following intervention by the photocell connected to this input, the doorbehavesasfollows:
OPENING: no effect
PAUSE: pause time re-counted
CLOSING: reversesimmediately
12 I-DET (NO default contact)
Intemal sensorinput.
By using SD-Keeper+Display, you can program the NC contact.
13
E-DET (NO default contact)
Extemal sensorinput.
By using SD-Keeper+Display, you can program the NC contact.

J6 TERMINAL BOARD
1 +24V
+24 V powersupply for accessories.
The total maximum load of the accessories connected to the " + VAcc" and "" +24 V " inputs, must not exceed 700 mA .
2 OUT3 (default "door not close")
Open-collector(negative) output (100mA).
In the standard setting, thisoutput isactive foraslong as the door is not closed.
By using SD-Keeper+Display, you can program the operation of this output differently (see programming instructions).
3-5-9 - (COM)
Negative for powering accessories (+24V and +Vacc) and common forcontacts.
4
OUT2 (default : "night courtesy light")
Open-collector(negative) output (100mA).
In the standard setting, this output isactivated for 60 sec . when the dooriscommanded to open in NIG HTmode. By using SD-Keeper+Display, you can program the operation of this output differently (see programming instructions).

MONODIR (NO contact)
If the SD-Keeper is not installed, closing this contact activates the "ONE WAY" function.
7
NIGHT (NO contact)
If the SD-Keeper is not installed, closing this contact a c tivates the "NIGHT" function.
8
OPENED (NO contact)
If the SD-Keeper is not installed, closing this contact activatesthe "DOOR OPEN" function.

10 OUT1 ("gong" default)

Open-collector(negative) output (100 mA).
In the standard setting, this input is active, while the photocells are covered, for 1 sec . at 0.5 sec . intervals until disengaged.
By using SD-Keeper+Display, you can program the operation of this output differently (see programming instructions).
11
KEY
(NO default contact)
Key command:
activation causes the doorto open and then re-close a fter night pause time elapses.
By using SD-Keeper+Display, you can program the NC contact.

12-13 SD-KEEPR

SD-Keeperconnection termina ls (cable: $2 \times 0.5 \mathrm{~mm}^{2}$ max 50m).
© Observe indic ated pola rity.
TERMINAL BOARD J7

NOTAUS
 (NC contact)

Contact forthe emergency push-button (NC) which cuts powerto the motor.
O If not used, jumper the terminals with a $0.5 \mathrm{~mm}^{2}$ cable.

MOTOR ROTATION DIRECTION

Set dip-switch $n^{\circ} 1$ a sfollows:

DOOR MODEL	DIP-SWITCH $\mathbf{N}^{\circ} \mathbf{1}$
2 LEAVES	OFF
1 LEFTOPENING LEAF	O N
1 RIGHTOPENING LEAF	OFF
$\boldsymbol{2}$ The c losing direction isesta blished by watching the	
a utomated system head profile from the front and:	

- in the case of a double leaf, the LEFTleaf connected to the top section of the belt.
- in the case of a single leaf, the leaf connected to the top section of the belt.

START-UP

The first time the door is powered, the 940SDM control board automatically executes a setup procedure and loadsall the standard configuration settings.

STANDARD CONFIGURATION

The standard configuration is asfollows:
-"AUTOMATIC"-"TOTAL"-"TWO-WAY"; operating function;

- maximum OPENING SPEED (level10);
-CLOSING SPEED level3;
-EMERG 1 emergency input configured asa "no memory" NO contact, i.e. when activated, itc a usesthe movement to stop and the door remains open in stop statusfor as long a sthe conta ct ismaintained;
-EMERG 2 emergency input configured asa "no memory" NO contact, i.e. when activated, it causes opening at normal speed and the doorrema insopen foraslong as the contact is ma inta ined;
-two photocells with NC contact are supplied, to be connected to the PSW1 and PSW2 contacts (if one or both are not installed, jumperconnectionsmust be made a ccording to the diagram);
- FAILSAFE disa bled;
- ANTI-INTRUDER function active;
- PAUSE time 2 sec.;
- NIGHTPAUSE time 8 sec .;
-KTLOCKenabled in standard mode (locksin NIGHTmode only);
- SURVEILANCE KITon disa bled lock;
- BATIERY KITnot enabled;
- OUT1 output with GONG function;
- OUT2 output with UG HTfunction;
- OUT3 output with DOOR NOTCLOSE function;
- PARTIALOPENING set at 50%
- no anticipated DECELERATION during opening and closing;
- Low DECELERATIO N SPEED;
- Standard OBSTACLE DETECTION: if an obstacle is recognised atopening orclosing, the doorreversesa nd continuously attempts to move until the obstacle is removed, without generating an alam signal;
-two SENSORS with NO contactare provided (one intemal, the otherextemal);
- NO type KEY contact;
- INTERLOCK function not activated;
-ANTI-PANIC KITWITH ELASTIC not ena bled;
-TMMER not activated.

IMPORIANT:

The standa rd configuration, partic ula rly forthe set speed levels, does not guarantee compliance with standards prEN12650-1 and prEN12650-2, specified for doors distributed a nd insta lled in the European Union.

PHOTOCELLS

The following configurationsare possible:

-NO PHOTOCEL

- In the standard configuration, PSW1 a nd PSW2 inputs must be jumper connected to the FAILSAFE terminal;
- for the SD-Keeper+Display, as an altemative, the PSW1 and PSW2 inputs can be disabled, thus avoiding the jumpers.

-1 PHOTOCEI

- In the standard configuration, the photocell must be connec ted to the PSW1 input, while PSW2 must be jumper connec ted to the FAILSAFE terminal;
- for the SD-Keeper+Display, as an alternative, one photocell only can be set (connecting it to the PSW1 input asusual), thusdisabling the PSW2 input and avoiding
the jumper (see the SD-Keeper programming instructions).
-2 PHOTOCEIS
- connect the photocells to the PSW1 and PSW2 inputs.

Programming with the SD-Keeper+Display makes it possible to (see programming instructions):

- select the number of connected photocells ($2,1,0$);
- select the type of contact (NO/NC) of the PSW1 and PSW2 inputs;
-enable/disable the failsafe.

SETUP

The following parameters are checked and adjusted during the Setup cycle:

- mea surement of masses and friction, setting of speeds, plusoptimala cceleration and deceleration;
- acquisition of open a nd closed door positions;
- self-setting of the a nti-c rushing system at opening/c losing according to selected speeds.
During Setup, the ERROR LED fla shes rapidly and goes off at the end of the process if correctly exec uted.
Any faults are signalled by the ERROR LED and by the diagnostic svia SD-Keeper.
Detection of serious faults (e.g. insufficient or excessive leaf travel, too much friction, motormalfunctions) causes the ERROR LED to light up stea dily.
Subsequent variations of closing speed (by the pushbuttons on the control board or SD-Keeper+Display) are signa lled by a slowly flashing ERROR LED and by ALARM 1; in this case, a new Setup is necessary to ensure that the electronic anti-crushing device operates correctly.
To activate a new Setup procedure, pressthe SEIUP pushbutton on the control board; Setup can also be started by a combination of push-buttons on SD-Keeper (see relevant instructions).
The following are the situations in which, if required, the Setup cycle is not executed, and the door stays in shutdown state, generating an alarm signal (slowly fla shing ERROR IED a nd ALARM 15 on SD-Keeper):
-doorpowered by battery;
- NIG HToperating function selected;
-MANUAL operating function selected;
-DOOROPEN operating function selected;
- an emergency input is active;
- photocellsengaged;
- no powersupplied to motor.

When the cause has been eliminated, the Setup starts automatically.

RESET

Whenever the automated system is powered, the door executes a Reset cycle during which:
-the door's tra vel limit positions a re sought;

- a ny a larm signa ls a re reset.

To activate a new Reset procedure, press the RESETpushbutton on the controlboard; Resetcan also be started by a combination of push-buttons on SD-Keeper (see relevant instructions).

If a Reset is commanded while the door is in "Manual" mode, it isexecuted when thisoperating function isexited.
In the "Night" operating function, Reset consists of a slow closing movement, whereasit is nomally a slow opening movement.
During Reset, the ERROR LED flashes ra pidly.

The reset procedure is necessary following the oc currence of certa in conditionscausing the doorto stop operating:

- afteran obstacle isdetected on 3 successive occasions during closing/opening when the function STANDARD OBSTACLE DEIECTION (ALARM 8 orALARM 9) has been activated;
- after a "with memory"-configured emergency command has been activated (see programming instructions), (ALARM 6 orALARM 7);
- if, when using a kitlock, a n opening malfunction isdetected on the kit.

SPEED CHANGES

There are 10 speed adjustment levels for opening and closing.
Level 10 refers to the maximum speed permitted by door weight, whereas level 1 refers to the corresponding minimum speed.
CLOSING speed can be adjusted by two push-buttonson the 940SDM control board (SP-UP and SP-DOWN) if the SD-Keeper is NOT present.
By using SD-Keeper+Display, you can change both c losing and opening speed.
Whenever closing speed is changed, the ERROR LED flashesslowly and the SD-KeepershowsALARM 1 to report the need to exec ute a new Setup, in orderto ensure the electronic anti-crushing device operates correctly.

BEHAVIOUR UNDER DIFFERENT OPERATING FUNCTIONS

OPERATING FUNCTION	DOOR STATUS	INIERNAL SENSOR (I-DEI)	EXTERNALSENSOR (E-DEI)	KEY	$\begin{aligned} & \text { EMERGENCY } \\ & \text { OPENING } \\ & \text { (EMERG 2) (2) } \end{aligned}$	EMERGENCY CLOSING (2)
MANUAL	IN ANY POSITION	no effect				
TOTALY OPEN	OPEN	no effect	no effect	no effect	no effect	immediate closing
TOTAL AUIOMATIC TWO-WAY	OPEN	restartspause time count	restartspause time count	startsnight pause time count	startspause time count	immediate closing
	CLOSED	totalopening and re-closing after pause time	totalopening and re-closing after pause time	total opening and re-closing afternight pause time	totalopening	no effect
PARIIAL AUIOMATIC TWO-WAY	PARTIALY OPEN	restarts pause time count	restartspause time count	startsnight pause time count	totalopening	immediate closing
	CLOSED	partialopening and re-closing after pause time	partialopening and re-closing after pause time	partialopening and re-closing after night pause time	totalopening	no effect
TOTAL AUTOMATIC ONE WAY	OPEN	restarts pause time count	no effect	starts night pause time count	starts pause time count	immediate closing
	CLOSED	totalopening and re-closing after pause time	no effect	total opening and re-closing afternight pause time	totalopening	no effect
PARIIAL AUIOMATIC ONE WAY	PARTIAแY OPEN	restartspause time count	no effect	startsnight pause time count	totalopening	immediate closing
	CLOSED	partial opening and re-closing after pause time	no effect	partialopening and re-closing afternight pause time	totalopening	no effect
TOTALNIGHT	CLOSED	no effect	no effect	(1) total opening and re-closing after night pause time	totalopening	no effect
PARTIALNIGHT	CLOSED	no effect	no effect	(1) partial opening and re-closing after night pause time	totalopening	no effect

(1) During standard operation with battery in the "Night"operating mode, opening is performed by activating the command key for 3 seconds.
(2) Emergland Emerg 2 inputscan be programmed with SD-Keeper+Display to obtain:

- emergency opening;
- emergency closing;
- stop.

Furthermore, command activation can be programmed:

- with no memory (when the command isde-activated, the doorresumes nomal operation);
- with memory (when the command isde-activated, a Reset is necessary to restore nomal operation).

This is the default configuration:
Emerg1--->Stop/no memory
A pulse (function not shown in the table) causesimmediate stop followed by slow re-closing afterpause time (night pa use time if the Night operating function was set).
Emerg2 --->Emergenc y opening/no memory: A pulse causesopening followed by reclosing after pause time.
Emergency comma nds have priority over all others.

SD-KEEPER PROGRAMMING UNIT

SD-Keeper is used for selecting operational functions, as well as adjusting and programming the 940 series automated doors.
It is divided into two parts: a fixed part used forselecting the operating functions by means of push-buttons and relevant signalling LEDs (fig. 3 ref. A), a nd a pull-out part with LCD display to accesscomplete programming (fig. 3 ref.B).
The SD-Keeper display can be used as a temporary programming unit: afterall programming and adjustments have been c a mied out, it can be fully removed bec ause the settings rema in stored on the 940SDM control board. When the display is removed, a cover is provided (fig. 3 ref. C).

SD-Keepercan be disabled by a combination of keys(see the special LOCKfunction) orby intemally fitting a jumper by meansof a switch (fig. 4 ref. LOCK).

FITTING

Refer to fig. 4 for an exploded view of fitting. Let cable route through point A orBaccording to the cable position needs.

CONNECTIONS

Connect SD-Keeper to the 940SDM control board with the following cable: $2 \times 0.5 \mathrm{~mm}^{2} \mathrm{max} 50 \mathrm{~m}$ (fig. 4).
If a jumper is closed between two terminals as shown in fig. 4 (LOCK), all keyson the progra mmerare disabled.

DIAGNOSTICS

SD-Keeper(also without display) hasa diagnostic function which, in case of an alarm, intemuptsno mal display of the function every 2 seconds in orderto show the fault status for 1 second by a combination of fla shing LEDs.
Consult fig. 5 a nd ta ble 1 to identify the type of a larm by interpreting the flashing LEDs.
O If there are several simultaneous faults, the first to be detected is shown.

fig. 5

Tab. 1 DIAGNOSTIC		Led			Oon		O $=0$ ff		
DESCRIPIION	MEANING	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
ENERGY SAV.	Operating on low battery consumption	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
1 SPEED CHANGES	Speed changed, new setup required	\bigcirc							
2 BAT. OPERATION	Door operating on battery	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
3 FORCED OPEN	Door forced opening in progress.	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
4 FLATBATIERY	Battery discharged: emergency movement not guaranteed	\bigcirc							
6 EMERG 2 ON	Emergency 2 input active	\bigcirc							
7 EMERG 10N	Emergency 1 input active	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
8 OBST.IN OPEN.	Opening obstacle detected 3 successive times; Reset necessary to restore operation.	\bigcirc							
9 OBST.INCLOS.	Closing obstacle detected 3 successive times; Reset necessary to restore operation	\bigcirc							
10 -	Lock locked in closed position	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
11 -	Lock locked in open position (with surveillance kit only)	\bigcirc							
12 0	Incorrect power supply to motor (VMOTabsent)	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
13 0	Photocell 2 faulty (PSW2 input)	\bigcirc							
14 -	Photocell 1 faulty (PSW1 input)	\bigcirc							
15 0	Setup not possible	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
18 0	Initialisation process not possible on motor. leaf stroke too long	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
20 0	Initialisation process not possible on motor. insufficient leaf stroke	\bigcirc							
22 0	Initialisation process not possible on motor. too much friction or leaf too heavy	\bigcirc	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
24 0	Motor failure	\bigcirc							
25 -	940SDM control board faulty	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

fig. 6

OPERATING FUNCTIONS

Selection is performed by pressing the keys on the fixed part of the programmer-the function is indicated by the relevant LED lighting up.
Note: when the "Night" or"Manual" modes have been set, the relevant selection keysmust be pressed to exit the modes.

MANUAL

The sliding leavesare free and can be activated manually.

TWO-WAY

Pedestrian transit is possible in both directions; the inside and outside radars are enabled.

ONE WAY

Pedestrian transit is possible in one direction only; the extemalradarisdisabled.

PARTIAL OPENING

The dooropensonly partially (stand ard: 50\%)
Partialopening can be adjusted in range from 10\%to 90% of total.

TOTAL OPENING

The dooropens completely.

AUTOMATIC

The dooropens (partially ortotally) a nd then re-closesafter the set pause time (standard: 2 sec.).
Adjusting range of pause time: 0 to 90 sec .

DOOR OPEN

The dooropens and staysopen.

NIGHT

The doorclosesand the lock (if present) is activated. The intemal and extemal radars are disabled.
The Key command causesthe doorto open and re-close afternight pause time elapses(standard: 8 sec).
Adjusting range of night pause time : 0 to 240 sec.
To obtain partial opening in this mode, before selecting the "Night" function, activate the "Partial Opening" function.

SPECIAL FUNCTIONS

SETUP

Setup is the door initialisation function during which parameters are self-leamed.
To a ctivate, simultaneously press keys (1) and (5) for 5 sec.

RESET

Reset is the function for restoring normal operating conditionsaftersome typesof ala m have been signalled. To a ctivate, simultaneously presskeys (2) and (3).

LOCK

When active, the Lock function disa bles SD-Keeper.
To activate (and de-activate), simulta neously press keys (3) and (4) for 5 sec.

BATTERY INSERTION/CHANGE

To keep the clock inside SD-Keeper active even in the event of a powercut, a 3V model CR1216 lithium battery is provided.
To insertorchange the battery, find the compartment on the printed circuit(fig.7) a nd observe the indic a ted polarity.

fig. 7

To access programming while the standard view is shown on the display, press a ny of keys \triangle or ∇.
Programming issubdivided into main menus(see box) split into subjects.
Afterselec ting the menu with keys \triangle or ∇, to access it press OK.
Each menu is, in tum, subdivided into sub-menusat different parametersetting levels.
Use keys \triangle or ∇ to select (sub-menu or parameter) and confirm with the OK key.
An asterisk on the display indicates the currently active setting.
To exit programming, select the "exit" function at each level. Otherwise, after about 2 minutes, the display automatic ally retums to standard view.

FLOW-CHART SD-KEEPER

FLOW-CHART SD-KEEPER

FLOW-CHART SD-KEEPER

1 LANGUAGE

Selects the language for showing the messages on the display.

2 SETUP

2.1 PARTIAL OPENING

Partial opening percentage

Selects the opening percentage (referred to total opening) performed in the "partial opening" operational function.
Standard value: 50\%
Adjusting range: from10\% to 90%

Standard

When the "partial opening" operational function is selected, sensor activation always causes a partial opening command.

No Standard

When the "partial opening" operational function is selected, simulta neous activation of the intemal and extemal sensors commands total opening.

2.2 PAUSE TIME
 On

Pause time enabled in the "automatic" operational function. Pause time value
If pause time is enabled, it can be set.
Standard value: 2 sec .
Adjusting range: from 0 to 90 sec .

Off

The leaves begin the closing stage as soon as the command elements (e.g. sensors) are inactive.

2.3 NIGHT PAUSE TIME
 Night pause time value

Sets pause time in the "night" operational function. Standard value: 3 sec .
Adjusting range: from 2 to 240 sec in steps of 2.

2.4 ANTI-INTRUDER

On
In "Automatic" operating mode, the door opposes manual opening attempts by means of contrary force.
During the attempt to open, an alarm is signalled on the control board ("Error" LED flashing slowly) and on the SD-Keeper (ala m \#3 - forced door).
Off
In "automatic" operating mode, when manual opening is attempted, the door opens automatic ally and re-closes after any pause time.
Note: In the "night" operational function, the anti-intruder is always active.

2.5 OBSTACLE DETECTION

Closing: Standard

If an obstacle is detected during closing, the door re-opens. During the next closing operation, closing is decelerated at the point where the obstacle had been detected, and continues at the slower speed until completed.

Closing: No Standard

If an obstacle is detected for 3 consecutive times at closing, the door stops in open position, and causes an alarm signal on the control board ("error" LED) and on SD-Keeper (alarm No. 9 - obstacle during closing).
To restore operation, resetting isnecessary eitherfrom the control board or from SD-Keeper.

Opening: Standard

If an obstacle is detected during opening, the door stops for one second and then re-closes.
During the next opening operation, opening is decelerated at the point where the obstacle had been detected, and continues at the slower speed until completed.

Opening: No Standard

If an obstacle is detected for 3 consec utive times at opening, the door stops in closed position, and causes an alam signal on the control board ("error" LED) and on SD-Keeper (alam No. 8 - obstacle during opening).
To restore operation, resetting isnecessary eitherfrom the control board or from SD-Keeper.

3 BATTERY

3.1 BATTERY KIT

 OffBattery kit not installed. On
Battery kit installed.

3.2 BAT. OPERATION

Standard

If there is a powercut and the operating function is other than "Night", the doorcontinuesoperating nomally until the battery has sufficient charge reserve to perform at least one emergency movement.
The last movement operation to be executed is the one selected with function 3.3.

No Standard

In the event of a powercut, the doorexecutes only the moving operation selected with function 3.3.

3.3 LAST OPERAT.

Opening
During battery operated functioning, the last moving operation is opening (see also function 3.2).

Closing

During battery operated functioning, the last moving operation is closing (see also function 3.2).

3.4 NIGHT BATT.
 Standard

In the event of a power cut, and with the "Night" operating function selected, the control board operates immediately in low consumption mode; opening is possible only by activating emergency opening, or the key command for 3 seconds (Key input).

No Standard

In the event of a power cut and with the "Night" operating function selected, the door operates nomally until the battery has sufficient charge reserve to perform at least one emergency movement.

4 LOCK

4.1 KIT LOCK

On
Lock installed.

Night

The lock locksthe leavesonly in the "night" operational function.
One way + night
The lock locks the leaves in the "night" and "one way" operational functions.

Always

The lock locks the leaves whenever they close, irespective of the set operational function.
Note: During battery operated functioning, the lock locks the leaves only in "night" operational function, irespective of the set selection.

Off

Lock not installed.

4.2 NIGHT LOCK
 Standard

In the "night" operational function, with discharged batteries, the lock keeps the leaves locked.

No Standard

In the "night" operational function, the lock is released before the batteries are fully discharged.

4.3 SURVEILLANCE Off

Surveillance device on lock not installed.
On
Surveillance device on lock installed.

5 DIAGNOSTICS

5.1 940SDM

The door's hardware model and the software of the 940SDM control board to which SD-Keeper is connected are shown.

5.2 NR. CYCLE

The count (non resettable) of the cycles effected by the door is shown.

5.3 ALARM N.

The number and description of the current alarm are shown.

No.	DESCRIPION	MEANING
	ENERGY SAV.	Operating on low battery consumption
1	SPEED CHANGES	Speed changed, new setup required
2	BAT.OPERATION.	Door operating on battery
3	FORCED OPEN	Door forced opening in progress
4	FLATBATIERY	Battery disc ha rged: emergency movement not guaranteed
6	EMERG 2 ON	Emergency 2 input active
7	EMERG 1 ON	Emergency 1 input active
8	OBST.IN OPEN.	Opening obstacle detected 3 successive times; Reset necessary to restore operation
9	OBST.IN CLOS.	Closing obstacle detected 3 consecutive times; Reset necessary to restore operation
10	o	Lock locked in closed position
11	o	Lock locked in open position (with surveillance kit only)
12	o	Incorrect power supply to motor (VMOTabsent)
13	o	Photocell 2 faulty (PSW2 input)
14	o	Photocell 1 faulty (PSW1 input)
15	o	Setup not possible
18	o	Initialisation process not possible on motor : leaf stroke too long
20	o	Initialisation process not possible on motor. insuffic ient leaf stroke
22	or	Initialisation process not possible on motor. too much friction
24	o	Motor malfunctions
25	o	940SDM control board faulty

RESET

Executes reset procedure.

6 ADVANCED MENU

PASSWORD

To access the advanced menu, insert the 4-digit password (default 0000).

1 OPERATION PARAMETERS

1.1 CLOSING SPEED

Sets door speed for closing.
When speed is changed with respect to the set value, an alarm is signalled on the control board ("Error" LED flashing slowly) and on the SD-Keeper (ALARM 1: speed change) - a new Setup is recommended.
Standard value: level 3.
Adjusting range: from 0 to 10

1.2 OPENING SPEED

Sets door speed for opening.
Standard value: level 10 (maximum speed)
Adjusting range: from 0 to 10

1.3 DECEL. WIDTH

Opening

Sets anticipated time value on the standard deceleration point at the opening stop position.
Standard value: 0 cm
Adjusting range: from 0 to 120 cm

Closing

Sets anticipated time value on the standard deceleration point at the closing stop position.
Standard value: 0 cm
Adjusting range: from 0 to 120 cm

1.4 DECEL. SPEED.

Speed:

Sets speed level during deceleration.
Standard value: low
Adjusting range: high/medium/low

2 IN/OUT SETUP

2.1 Emerg 1

2.2 Emerg 2

Sets the effect of the emergency commands (Emerg1 and Emerg2 inputs on 940SDM control board).
Standard setting EMERG 1:
Stop/No memory/NO
Standard setting EMERG 2:
Open/Speed: Standard/No memory/ NO

Open

Activating this command opens the door.
Close
Activating this command closes the door. Stop
Activating this command stops the door.

Speed: Standard

The dooropensorcloses(according to setting) at nomal speed.

Speed: No Standard

The door opens or closes (according to setting) at slow speed.

No memory

In order to keep the emergency active, the command must be maintained active (on release, the door retums to nomal operation).

With memory

A pulse keeps the emergency operational;
To restore operation, resetting isnecessary eitherfrom the control board or from SD-Keeper.

No

Normally open input.

Ne

Nomally closed input.

2.3 Photocells

Quantity
Number of connected photocells.
Standard no.: 2
Settable no.: 0, 1, 2
When no photocells are configured and the selected status is NC (see below), there is no need to jumper connect unused inputs.
When configuring 1 photocell, you can connect to the PSW1 input of the 940SDM control board.

Failsafe Off

Failsafe test on photocells not executed.

Failsafe On

Failsafe test on photocells executed before each movement.

Nc

Normally closed input.
No
Nomally open input.

2.4 SENSORS

Sets the status of "external radar" and "internal radar" commands (E-Det and I-Det inputs on 940SDM control board).

No

Nomally open input.

N_{c}

Nomally closed input.

2.5 KEY

Sets the status of the "key" command (Key input on the 940SDM control board).

No

Normally open input.
Nc
Normally closed input.

2.6 OUT 1

2.7 OUT 2
2.8 OUT 3

Sets function or status associated with individual outputs on the 940SDM control board.
Standard setting OUT 1:
Gong/NO
Standard setting OUT 2:
Light/NO
Standard setting OUT 3 :
No close/NO

Function/Status

The output is activated according to selection:

SEIECTION	OUIPUT ACTIVATION
OPEN	Until the door is open
MOVING	Until door is moving
NOT CLOSE	Until door is not closed
ALARM	Until the door is in alam status
GONG	Intervention of photocellsactivatesthe output for 1 sec. at 0.5 sec.. intervals until release.
LIGHT	In "night" operational function, when the door is commanded to open, the output isactivated for60 sec.
INTERLOCK (*)	The output isactivated to create an interlock between the doors

(*) The "interlock" function cannot be selected but is automatically set on the OUT1 output when the interlock is activated (see Various/Interlock).
No
Normally open output.
Ne
Nomally closed output.

3 VARIOUS

3.1 Stand Setup

Used forchecking if any non-standard programming operation was effected.

Standard

If no function was modified with respect to the standard programming, an asterisk is shown.
If the asterisk is not present, press the "OK" key and all sta ndard programming functions are reset.

No Standard

If at least one function was modified with respect to the standard programming, an asterisk is shown.

3.2 Interlock

The interlock function makes it possible to control two sliding doors (master and slave) so that opening of one depends on closing of the other and vice versa.
Off
Interlock function not active.
On
Activates the interlock function.

Master

The master door (usually the intemal one).

Slave

The slave door.

No Memory

With interlock operation, you must wait for one door to re-close before commanding the other to open: any opening pulses sent during the operating cycle of the first door, have no effect.

With Memory

With interlock operation, there is no need to wait for one door to re-close before commanding the other to open: any opening pulses sent during the operating cycle of the first door are memorised, and the second door opens automatically as soon as the first door closes.

3.2 Kit elastic.

The elastic kit is a mechanical accessory which, when installed, enables anti-panic opening of the leaves in case of a blackout.

Off

Elastic kit not installed.
On
Elastic kit installed.

Standard

When power is restored after a blackout, the door remains set in its"manual" operating function (which cannot be changed) until the device is reset by manually closing the leaf.
© For correct operation, the SD-Keeper must be pemanently installed.

No standard

When powerisrestored aftera blackout, the doorautomatic ally executes the movement required to reset the device.
Important!: when the system is being automatic ally reset, the anti-crushing device is disabled.

4 CHANGE PASSWORD

Sets the new password for accessing the advanced menu (4 digits).

7 CLOCK

Sets the current day, time and date.

TIMER
 Off

Timer not activated.
On
Timer activated: the operating time bands set in " 9 Timer Programming" are enabled.
When the timer is activated, a " T " a ppears at the side of the time shown on the display and the SD-Keeper will not allow any operational selection.
The battery inside the SD-Keeper maintains the clock in operation even if power is not supplied; if corect time is lost (e.g. black-out and discharged battery), a flashing asterisk appears in place of the " T " and the timer is disabled.

9 TIMER PROGRAMMING

With the timer, you can create up to 5 different time bands for each day of the week (by setting the band starting time) and assign an operational function to each time band.
When the SD-Keeper's intemal clock reaches the starting time of a band, the associated operating function is automatically set, and the door remains in this condition until the subsequent band intervenes.
Permanent connection of the SD-Keeper+Display is necessary for correct management of time bands.

Selecting the day

Selects the day of the week to create time bands.
If you select "All days", any time bands defined subsequently are included in all days of the week.

Function

Sets the operating function to be associated with the time band by refering to the following table:

FNN	MEANNG
0	NO FUNCTION
1	AUTOMATIC TWO-WAYTOTAL
2	AUTOMATIC ONEWAYTOTAL
3	AUTOMATIC TWO-WAY PARTIAL
4	AUTOMATIC ONEWAYPARTAL
5	DOORTOTAШYOPEN
6	DOORPARTAUYOPEN
7	MANUAL
8	NIGHT

Time band starting time

Sets the activation time for the time band.
There is no need for the time bands to be in chronological order.

-TIMER PROGRAMMING EXAMPLE-

We wish to program a door operating at the following times: - from MONDAY to FRIDAY:

- from 8 a.m. in AUTOMATIC TWO-WAY TOTAL
- from 6 p.m. in AUTOMATIC ONE WAY TOTAL
- from 7 p.m. in NIGHT
- SATURDAY and SUNDAY: NIGHT for the whole day

Proceed as follows:
select A山 DAYS and set the following:
TIME BAND 1: FUN 18 a.m.
TIME BAND 2: FUN 26 p.m.

TIME BAND 3: FUN 87 p.m.
TME BAND 4: FUN 0
TME BAND 5 : FUN 0
Select SAT a nd set the following:
TIME BAND 1: FUN 0
TMME BAND 2: FUN 0
TME BAND 3: FUN 0
TME BAND 4: FUN 0
TIME BAND 5: FUN 0
Select SUN and set the following:
TIME BAND 1: FUN 0
TIME BAND 2: FUN 0
TME BAND 3: FUN 0
TIME BAND 4: FUN 0
TME BAND 5: FUN 0

ACCESSORIES

LOCK

Lock card installation procedure:

- cut ma ins power,
- insert the lock card in a ny of connectors $11, \mathrm{~J} 12, \mathrm{~J} 13$ of the 940SDM control board;
- make the electric connections;
- restore power.

Note: to avoid damaging the lock card, always insert it when power is OFF.
In the standard configuration:

- the lock locks the leaves only in the Night operating function.
- if operating on batteries in the Night mode, if the batteries become discharged, the lock continues locking the leaves.
By using SD-Keeper+Display, you can change lock operation.

LOCK SURVEILLANCE

This accessory ena blesa check of lock effic iency and, in the event of an emor, this is signalled by the SD-Keeper. To activate lock surveillance, the function must be set with SD-Keeper+Display.

ANTI-PANIC WITH ELASTIC

The "Kit elastic" is a mechanical accessory enabling opening of the leavesin case of a black-out.
To ensure the system operates correctly, the SD-Keeper must be pema nently installed.
Ela stic kit installation procedure:

- supply mainspowerto the door,
- execute the Setup;
- activate the ela stic kit with SD-Keeper+Display;
- install the accessory mec ha nic ally.

After installation, the lea veswill open when mainspower fails; when mains power is restored, the elastic must be "reset".
Resetting ca be done in two different ways(selected with SD-Keeper+Display):

- manually (STANDARD),
- a utomatic a lly (NO STANDARD).

Resetting enta ils re-closing the leaves in order to apply tension to the elastic and re-connect it to the electric magnet (re-connection occurs with the leaves totally closed and the 940SDM control board powered).
If manual resetting is selected, when mains power is restored, the door is in manual mode, and this mode cannot be exited until the leaves are totally re-closed manually.
If automatic resetting is selected, when mains power is restored, the control board activates a leaf closing procedure, using much greater power than is usually required formovement; furthemore, the ANTI-CRUSHING DEVICEISNOTACTIVE during thisprocedure.
During the automatic procedure forresetting the ela stic:

- if the photocells intervene, the door reopens and the disengagement procedure begins;
-the sensors are disabled;
- any Setup requestsare ignored.

IMPORTANT:

- NEVER camy out a Setup procedure if the elastic hasnot been reset,
- do not install the batteries with this a ccessory.

ANTI-PANIC BY BREAK-OUT

This accessory enables the leaves to be opened by pressure; to installit, refer to the specific instructions. If installing the anti-panic by break-out facility, a sensor (according to Sta nda rds prEN12650-1 a nd prEN12650-2) must be installed. It must be connected to the EMERG 1 input (via SD-Keeper+Display) configured forcommanding immediate stop of the movement.

ENGUSH

BATTERY KIT

Battery card installation procedure:

- cut mains power,
- insert the battery card in connector J11, J12 or J 13 of the 940SDM control board;
- restore mains power;
- using the SD-Keeper+Display, activate the "Battery Kit" and set the required operating parameters (the standard configuration is described further below);
- connect the batteries to the battery card on connector J 2 .

IMPORTANT: TO AVOID DAMAGING THE BATIERY CARD:

- ALWAYS insert and remove the battery card while ma inspower is OFF.
- connect the batteries (connector J2) only when the battery card has already been inserted.

F1	Fuse 20 T5A/250V (battery protection)
$\mathbf{J 1}$	Connection to 940SDM control board
$\mathbf{J 2}$	Battery connection
J3	Connection to J10 of 940SDM board
OUT1	Relay output (Com/NC/NO)
OUT2	Relay output (Com/NC/NO)
LD1 (green)	Door power supply mode
DD2 (red)	Battery charge status

By using the SD-Keeper+Display, you can select door behaviour in battery operation mode, so that, if mains power fails:
OPERATING FUNCT. other than NIGHT and STANDARD BAT. OPERATION programming:

- the control board continues to operate normally until the battery has only sufficient reserve charge to perform at least one emergency movement, after which
-the last programmed movement is performed (opening or closing), a nd finally
-the 940SDM control board goes into ENERGY SAVING status. OPERATING FUNCT. other than NIGHT and NO STANDARD BAT OPERATION programming:
-the last programmed movement is immediately performed (opening or closing), after which
- the 940SDM control board goes into ENERGY SAVING status.

NIGHT OPERATING FUNCT, and NIGHT STANDARD BAT. OPERATION programming:
-the 940SDM control board goes into NIGHT ENERGY SAVING status.
NIGHT OPERATING FUNCT. and NIGHT NO STANDARD BAT. OPERATION programming:

- the control board continues to operate normally until the battery has only sufficient reserve charge to perform at least one emergency movement, after which
-the 940SDM control board goes into NIGHT ENERGY SAVING status.

ENERGY SAVING (other than Night operating function)

$\cdot+\mathrm{VAC}$ is switched OFF;

- SD-Keeper shows ENERGY SAV. on the Display, the alarm is signalled, back lighting goes OFF, menus cannot be scrolled, and only the keys forchanging the operating function rema in active.

NIGHT ENERGY SAVING (Night operating function)

$\cdot+\mathrm{VAC}$ is switched OFF;

- SD-Keeper completely OFF.

These statuses can be exited in the following ways:
WAKE-UP PROCEDURE (KEY INPUT FOR 3 SEC)
If the last selected movement was opening, the SD-Keeper reactivates itself for night pause time and then returns to ENERGY SAVING status.
If the last selected movement wasclosing, opening is executed. When the door is open, the SD-Keeper re-activates itself for night pause time, after which the + Vacc is re-activated too (to allow the photocells to operate) and the door re-closes (SD-Keeper resumes its ENERGY SAVING status).
BY ACTIVATING AN EMERGENCY INPUT (EMERG1 or EMERG2) Providing it was set, the emergency movement is executed. SD-Keeper stays ON during the period when the emergency status remains active. Vacc is re-activated if a closing movement is requested.
BY USING THE LOCK KNOB
See the WAKE-UP function.
NOTE: by using SD-Keeper+Display, you can configure lock operation in battery-powered Night mode.

	GREEN LED ON	RED LED OFF
$\begin{aligned} & \text { LED RED } \\ & \text { ON } \end{aligned}$	- the door is mains powered - battery at very low charge level (1) - OUT1 not active - OUT2 active	- the door is battery-powered - battery fully discharged (3) - OUT1 not active - OUT2 not active
LED RED FLASHING	- the door is mains powered - battery now recharging; if mains power fails, no emergency movement is guaranteed (2) - OUTI not active - OUT2 active	- the door is battery-powered - battery now discharging; at least one emergency movement is guaranteed (2) - OUTI not active - OUT2 not active
$\begin{aligned} & \text { LED RED } \\ & \text { OFF } \end{aligned}$	- the door is mains powered - the battery is charged; if mains power fails, door movement is guaranteed - OUTI active - OUT2 active	- the door is battery-powered - the battery is charged and can move the door - OUT1 active - OUT2 not active

(1) If the red LED does not start to flash within about 30 mins, the causes may be as follows:

- incorrect battery connection or no battery connection;
- fuse F1 intemupted;
- batteries or battery card damaged.
(2) recharging time for fully discharged batteries: about 14 hours.
(3) No emergency movement is possible: the accessories connected to $+V a c c$ and SD-Keeper are tumed OFF and the Manual operating mode is set.

INTERLOCK WITH INTERNAL SENSORS

This application is recommended when the distance between the two doors is sufficient to avoid interference in the detection ranges of the two intemal sensors.

- Make the connections between the J 6 terminal boards of the two 940SDM control boards and the sensors as shown in figure 8.
- Program the following functions:
- "interlock" active on both doors,
- select the "master" option for the intemal door, and the
"sla ve" option forthe extemal one,
- select, forboth doors, option"interlock with no memory" or"interlock with memory" (refer to explanations in the programming flow-charts).

Important

-The sensorsmust be connected ONLY to the KEY input of the equipment;
-The interloc k will operate only if both doors are set to the NIGHTor ONE WAY operating function.

Operation

These are the interlock operational stages:

1) The person on the outside activates sensor S1 of door A;
2) DoorA opens;
3) The person entersthe intemalspace between the two doors;
4) DoorA closes after the night pause time elapses;
5) The person activatessensor 53 of doorB (If the "Interlock with memory" option wasselected, there is no need to wait forthe first doorto close totally in orderto activate the sensor of the second door);
6) Door Bopens;
7) The person exits;
8) Door Bcloses after the night pause time elapses.

The operation is identical if the person comes from the opposite direction.

fig. 8

INTERLOCK WITHOUT INTERNAL SENSORS
This a pplication is recommended if the doors are so near to one another that the two intemal sensors cannot be used; two push-buttons are provided for activating the doors from the outside.

- Ma ke the connectionsbetween the J 6 teminal boards of the two 940SDM control boards, of the push-buttons and additional electronic componentsasshown in figure 9.
- Program the following functions:
- "interlock" a ctive on both doors,
- select the "master" option forthe intemal door, a nd the "sla ve" option for the extemal one,
- select the "interlock with memory" option forboth doors (referto explanations in the programming flow-charts).

Important

-The push-buttons must be connected ONLY to the KEY input of the equipment;
-The interlock will operate only if both doorsare set to the NIG HTorO NE WAY operating function.

Operation

These are the interlock operational sta ges:

1) The person on the outside activates push-button P1 of doorA;
2) DoorA opens;
3) The person enters the intemal space between the two doors;
4) DoorA closes after the night pause time elapses;
5) DoorBopensautomatic ally;
6) The person exits;
7) Door B closes after the night pause time elapses.

The operation is identical if the person comes from the opposite direction.

DIAGNOSTICS GUIDE

The following is a list of the specified alarms plus the relevant explanation/solution.
SD-Keeper+Display showsthe alam number and description on the Diagnosticsmenu.
Only the SD-Keeper shows the type of alarm by a combination of flashing LEDs (refeming to the figure on the side).

DESCRIPIION	CAUSE	NOTES	ACTIONS	ITD
ENERGY SAV.	The 940SDM control board is operating in battery powered low consumption mode	In thismode, SD-Keeper'sback-lighting isOFF and menuscannot be scrolled on the display.	(see battery kit instructions) However, the push-buttonsforchanging the operating functionsare active.	2
1 SPEED CHANGES	Closing speed waschanged.		Execute a new SEIUP	7
$\begin{aligned} & 2 \text { BAT } \\ & \text { OPERATION } \end{aligned}$	940SDM control board operating on battery	GREEN LED on battery c ard is OFF	In the event of a powercut, thisisthe nomal battery-powered operation signal However, if mainspowerisa vaila ble, check: - isthe 5×20 T1A fuse of the transformer in the powersupply unit intemupted? - isthe F25x20T1A fuse on the 940SDM control board intemupted? - Isthe 220V~ ma inspowersupply correctly connected? - IsconnectorJ 1 fitted correctly on the 940SDM controlboard? If the a larm persists, replace the 940SDM control board. If the alarm persists, replace the transformer.	3
3 FORCED OPEN	Someone isnow trying to force the door.	Thissignal isgenerated only if STANDARD ANTIINTRUDER isset.		3 7
4 FLAFBATIERY	The battery isdisc harged: emergency movement isnot guaranteed atchangeover from mains-powered to battery-powered mode.	RED LED on battery card is ON steady.	If the alam goeson formore than one hour, check the following: - connectionsto battery - isthe battery card inserted corectly? - isthe $5 \times 2015 A$ fuse on the battery card intemupted? - are the batteries efficient? If the a larm persists, replace the battery card. If the alam persists, replace the batteries.	4
6 EMERG 2 ON	Emergency input2 active.	Thissignal isshown wheneverthe EMERG2 emergency contact is active. If the WTH MEMORY function wasselected forthis input, the signal continueseven when the contact is no longeractive.	If the WIHMEMORY function wasselected for the EMERG 2 input, when the contact isrestored, RESETisnec essary to cancel the signal.	3
7 EMERG 1 ON	Emergency input lactive.	Thissignal isshown wheneverthe EMERG 1 emergency contact is active. If the WIH MEMORY function wasselected forthisinput, the signal continueseven when the contact is no longeractive.	If the WTHMEMORY function wasselected for the EMERG 1 input, when the contactisrestored, RESETisnecessary to cancel the signal.	3 4 7
8 OBST IN OPEN.	An obstacle wasdetected 3 consecutive timesduring the opening movement.	Thissignal is shown only if the following function wasselected: OBSTACLEDEIECTION--> OPENING: NO STANDARD	Remove the obstacle and execute RESETto restore operation.	8
9 OBST IN CLOS.	An obstacle wasdetected 3 consecutive timesduring the closing movement.	Thissignal is shown only if the following function wasselected: OBSTACLEDEIEC TION --> CLOSING: NO STANDARD	Remove the obstacle and execute RESETto restore operation.	78
10	The lock islocked in closed position.	Thissignal isshown only if the lockwasinstalled: - withoutsurveillance: the doorattemptsto release the lock3timesand then stopsin a state from whic h it can exit only by a RESETor by tuming the emergency release knob. - with surveillance: the doorstopsimmediately in a state from which it c a n exit only by a RESET orby tuming the emergency release knob	Check the following: - isthe lock card inserted corectly? - are the lockconnectionsgood? - isthe lockoperating correctly? - isthe lock surveillance kit (if any) correctly fitted and connected? If the a la m continueseven after RESET,replace the lockcard and/orthe lock.	3 8
11	Locknotclosing	Thissignal isshown only if a SURVEIШANCEKIT wasinstalled ON THELOCK, and was programmed.	Check the following: - isthe lock card inserted corectly? - are the lockconnectionsgood? - isthe lockoperating corectly? - isthe lock surveillance kit correctly fitted and connected?	3 7 8
12	Incorrect powersupplied to motor.	The +VMOTgreen LED is OFF.	Check the following: - isthe F1 5x20 T6.3A fuse on the 940SDM control board intemupted? - isconnectorJ 1 correctly fitted?	4
13	Photocell 2 faulty.	Thissignal isshown only if the FAILSAFE function is active and 2 photocellswere configured.	Check the following: - isphotocelll 2 aligned correctly? - photocell2 connections - isphotocell 2 in good condition and effic ient?	4 7 8

14	Photocell 1 faulty.	Thissignal isshown only if the FAILSAFEfunction is active and at least 1 photocell wasconfigured.	Check the following: - isphotocelll 1 aligned correctly? - photocell 1 connections - isphotocell 1 in good condition and efficient?	3 4 8
15	SEIUP execution isimpeded in some way.	When the trouble fault isremoved, SETUP starts automatically	Check the following: -the set operating function isnotMANUAL, NIGHT,orDOOROPEN. - operation isnot battery-powered - photocellsare notengaged - no emergency input isactive - motorpowersupply absent (+VMOTLED OFF)	3 4 7 8
18	SETUP procedure cannotbe completed because excessively la rge (over3m) transitspace wasdetected	When thissignal isgenerated, the ERRORLED on the 940SDM control board is ON steady and the doorislocked.	Reduce leaftraveland execute a new SETUP	2
20	SETUP procedure cannotbe completed because insuffic ient (lessthan 70 cm) transitspace wasdetected	When thissignal isgenerated, the ERRORLED on the 940SDM control board isON steady and the doorislocked.	Increase leaftraveland execute a new SEIUP	2
22	The SEIUP procedure cannot be completed because excessive friction or excessive leaf weight was detected.	When thissignal isgenerated, the ERROR LED on the 940SDM control board isON steady and the doorislocked.	- cut powerorset the MANUALoperating function, and then manually checkif the leaves are moving correctly. -checkweight of leaves	2 3 4
24	A motorfault wasdetected duning operation.	When thissignal isgenerated, the ERRORLED on the 940SDM control board isON steady and the doorislocked.	Check the following: - isconnectorj 3 fitted correctly? - isthe motorefficient? If the ERRORLED isflashing, when the error cause iseliminated, the doorresumesoperating nomally; if, instead, the ERRORLED isON steady, execute a SETUP when the cause hasbeen removed. If the a lam persists, replace the 940SDM control board. If the alarm persists, replace the motor.	2
25	940SDM control board failure		Replace the 940SDM control board	2 7 8
All the LEDs of the operating functions are flashing.	No communication between SD-Keeperand 940SDM controlboard.		Check the following: - connection length must notexceed 50 m - each connection cable must have a minimum diameterof $0.5 \mathrm{~mm}^{2}$ If the alarm persists, replace the SD-Keeper. If the a larm persists, replace the 940SDM control board.	

TROUBLESHOOTING

The following will help you identify and solve some partic ularstates.

	STATE	SUG G ESTION
A	SD-KEEPER off	- no mainspowersupplied and the 940SDM control board isbattery-powered in NIGHToperating function, and in energy saving statues. - connection to the 940SDM control board isintemupted: checkthe connection cablesand wiring between SD-Keeperand the 940SDM control board -940SDM control board not operating correctly; replace the 940SDM control board
B	LEDs MAIN, VACc, VMOTand +24V OF	- check if the F2 5x20T1A fuse on the 940SDM control board isintemupted - isthe 5×20 T1A fuse inside the powersupply unit intemupted? - Isconnectorj 2 fitted correctly on the 940SDM control board? - checkconnection to the powersupply unit - 940SDM control board not operating correctly; replace the 940SDM control board
C	MAIN IED OF; VACc, VMOT and +24V LEDs all ON	- ma inspowernotsupplied and the 940SDM control board isbattery-powered -ifmainspowerisbeing supplied, see point B
D	MAIN and Vacc LEDs OF; VMOT and +24V LEDs ON	- no mainspowersupplied, the 940SDM control board isbattery-powered and in energy saving statues. - if mainspowerisbeing supplied, see point B
E	VMOT IED OF; MAIN, VACC and +24V LEDs ON	- isthe $\mathrm{F1} 5 \times 20$ T6.3A fuse on the 940SDM control board intemupted? - IsconnectorJ 3 fitted correctly on the 940SDM control board? - checkif the powersupply unit and the control board are efficiently connected -940SDM control board not operating correctly; replace the 940SDM control board
F	VMOTand Vacc LEDs OFF; MAIN and +24V LEDs ON	-thisstate occurswhen the control board software isbeing updated -there may be condensation on the board; cutpowerand dry the dampness. -940SDM control board not operating correctly; replace the 940SDM control board
G	ERROR LED flashing slowly	- alarm in progress: connect the SD-Keeperto find the alarm and take the appropriate action (see the diagnosticsguide)
H	door locked and ERROR IED ON	- SEIUP must be executed - alarm in progress: connect the SD-Keeperto find the alarm and take the appropriate action (see the diagnosticsguide) - checkmotorconnection - checkmotorencoder connection - check the condition of the encoderconnection flat cable
I	door NOT executing SEIUP and ERROR LED flashing slowly	- SEIUP execution impeded (see 940SDM control board instructions)
L	door NOTCLOSING and ERROR IED off	- photocell/sengaged - make sure that the selected operating function isnotDOOROPEN (if no SD-Keeperisinstalled, make sure that input 8 of the J 6 temminalboard isnot jumperconnected to the negative) - make sure that the selected operating function isnotMANUAL - checkmotorconnection - checkifpowerisbeing supplied to the motor(VMOTLED ON)
M	door NOT OPENING and ERROR LED off	- make sure that the selected operating function isnotMANUAL - make sure that the selected operating function isnot NIGHT(ifno SD-Keeperisinstalled, make sure that input 7 of the J 6teminal board isnot jumperconnected to the negative) -checkmotorconnection - make sure that the lock isnot locked - checkifpowerisbeing supplied to the motor(VMOTLED ON)
N	door CLOSES instead of OPENING and vice versa	- reverse the position of dip-switch 1 on the 940SDM control board and execute a SETUP
0	door moving for short distances only	- checkifencoderconnectorJ 4 iscorrectly inserted - check condition of the encoder - check the condition of the encoderconnection flat cable
P	door movements very slow	- using the SD-Keeper+Display, checkif the selected speed levelsare asrequired - using the SD-Keeper+Display, checkif the selected deceleration distancesare asrequired
Q	ERROR IED flashing rapidly	- doorexecuting a SEIUP; wait forthe procedure to end -doorexecuting a RESET; waitforthe procedure to end - with the KITELASTIC installed, the doorisresetting the elastic; waitforthe procedure to end

Le descrizioni e le illustrazioni del presente manuale non sono impegnative. La FAAC si riserva il dintto, lasciando inalterate le caratteristiche essenziali dell'apparecchiatura, di apportare in qualunque momento e senza impegnarsi ad aggiomare la presente pubblic azione, le modific he che essa ritiene convenienti permiglioramentitec nicio perqualsia si altra esigenza dicarattere costruttivo o commerciale.
The descriptions and illustrations contained in the present manual are not binding. FAAC reservesthe right, whilst lea ving the ma in features of the equipments unaltered, to undertake a ny modific ations it holdsnecessary foreithertec hnic alorc ommercial reasons, a ta ny time and withoutrevising the present publication.

Lesdescriptionsetlesillustrationsdu présentma nuel sont foumiesà titre ind ic a tif. FAAC se réserve le droit d'apporterà tout moment lesmodific ationsqu'elle jugera utiles surce produit tout en conservant les carac téristiques essentielles, sans devoir pour autant mettre à jour cette publication.
Die Beschreibungen und Abbildungen in vorliegendem Handbuch sind unverbindlich. FAAC behält sich das Recht vor, ohne die wesentlichen Eigenschaften dieses Gerätes zu verändem und ohne Verbind lic hkeiten in Bezug a ufdie Neufa ssung dervorliegenden Anleitungen, tec hnischbzw. konstruktiv/ kommerziell bedingte Verbesserungen vorzunehmen.
Las descripciones y las ilustraciones de este manual no comportan compromiso alguno. FAAC se reserva elderecho, dejando inmuta daslasc aracteństic asesencialesde losaparatos, de aportar, en cualquiermomento ysin comprometerse a poneraldía la presente public ación, todaslasmodificaciones que considere oportunaspara el perfec ciona miento téc nico o para cualquierotro tipo de exigencia de carácter constructivo o comercial.

FAAC perla natura

- La presente istruzione è realizzata al 100% in carta ricic lata
- Non disperdete nell'a mbiente gli imballaggi dei componenti dell'automazione bensì selezionate i vari materiali (es. cartone, polistirolo) secondo prescrizioni locali per lo smaltimento rifiuti e le nome vigenti.
FAAC for the environment
- The present manual is produced in 100% recycled paper
- Respectthe environment. Dispose ofeachtype of productpackaging material(card, polystyrene) in accordance with the provisions for waste disposal as specified in the country of installation.

FAAC der Umweltzuliebe

- Vorliegende Anleitungen sind auf 100\%Altpa pier gedruckt.
- Verpackungsstoffe der Antriebskomponenten (z.B. Pappe, Styropor) nach den einschlägigen Normen derAbfallwirtsc haft sortenrein sammeln.

FAAC écologique

- La présente notice a été réa lisée 100% avec du papier recyclé.
- Ne pasjeterdansla nature lesemballagesdescomposants de l'automatisme, mais sélectionner les différents matéria ux (ex.: carton, polystyrène) selon la législation locale pour l'élimination des déchets et les nomes en vigueur.
FAAC porla naturaleza.
- El presente manual de instrucciones se ha realizado, al 100\%, en papel recic lado.
- Los materialesutilizados para el embalaje de lasdistintas partes del sistema automático (cartón, poliestireno) no deben tirarse almedio a mbiente, sino selecciona rse conforme a laspresc ripciones locales y las normas vigentes para el desecho de residuos sólidos.

FAAC S.p.A

Via Benini, 1
40069 Zola Predosa (BO) - ITALA
Tel.: 051/61724 - Fax: 051/758518
www.faacgroup.com

UNI EN ISO 9001:2000

