EC MACHINE DIRECTIVE COMPUANCE DECLARATION
 (DIREC TIVE 89/ 392 EEC, APPENDIX II, PARTB)

Manufacturer:
FAAC S.p.A.
Address:
Via Benini, 1-40069 Zola Predosa BOLOGNA - ITALY

Hereby declares that the 550 a utomation system

- is intended to be incorporated into machinery, or to be assembled with other machinery to constitute machinery in complia nce with the requirements of Directive 89/392 EEC , a nd subsequent a mendments 91/368 EEC, 93/44 EEC and 93/68 EEC;
- complies with the essential safety requirements in the following EEC Directives:

73/23 EEC a nd subsequent amendment 93/68 EEC.
89/336 EEC and subsequent a mendments 92/31 EEC and 93/68 EEC.
and furthemore declares that unit must not be put into service until the machinery into which it is inc orporated or of which it is a component has been identified and declared to be in conformity with the provisions of Directive 89/392 EEC and subsequent amendments enacted by the national implementing legislation.

Bologna, 1 J anuary 1999

IMPORTANTNOTICE FOR THE INSTAШER

GENERALSAFETY REGULATIONS

1) IMPORTANT! FAAC strongly recommends to follow these instructions c arefully for the safety of persons. Improper installation or misuse of the product will cause very serious damages to persons.
2) Read the instructions carefully before installing the product.
3) Packaging materials (plastic, polystyrene etc.) are a potential hazard and must be kept out of reach of children.
4) Keep these instructions for future reference.
5) This product has been designed and manufactured only for the use sta ted in this manual. Any other use not expressly set forth will affect the reliability of the product and/or could be source of hazard.
6) FAAC S.p.A. cannot be held responsible forany da mage caused by improper use or different from the use for which the automation system is destined to.
7) Do not use this device in a reassubject to explosion: the presence of flammable gas or fumes is a serious hazard.
8) Mechanic al construc tive elements must c omply with UNI 8612, CEN prEN 12604 and CEN prEN 12605 standards.
Countries outside the EC shall follow the regulations above besides theirnational noma tive referencesin orderto offerthe utmost sa fety.
9) Faac cannot be held responsible for failure to observe technical sta nda rdsin the construction of gatesand doors, orfora ny deformation of the gates which may occur during use.
10) Insta llation must c omply with UNI8612, CEN prEN 12453 a nd CEN prEN 12635.

The degree of safety of the automation must be $C+D$.
11) Before camying out any operations, tum off the system'sma in switch.
12) An omnipower switch shall be provided for the installation with an opening dista nce of the contactsof 3 mm of more. Altematively, use a 6A themomagnetic breakerwith multi-pole switching.
13) Ensure that there is a differential switch up-line of the electrical system, with a trip threshold of 0.03 A .
14) Check that the earthing plant is in perfect condition and connect it to the metallic parts. Also earth the yellow/green wire of the operator.
15) The automation is fitted with an anti-crush safety system that is a torque control device. In any case, further safety devices shall be installed.
16) The safety devices(e.g.photocells, safety edges, etc.) protectareas where there is a mechanical movement hazard, e.g. crushing, entrapment and cutting.
17) Each installation must be fitted with at least one flashing light (e.g. FAAC LAMP, MINILAMP, etc .) a swell asa wa ming plate suita bly fixed to the gate, besides the safety devices as per point 16 above.
18) Faac cannot be held responsible regarding safety and correct functioning of the automation in the event that parts other than Faac original parts are used.
19) Use only Faac original spare parts for maintenance operations.
20) Do not carry out any modific a tions to automation components.
21) The installermust supply all information regarding manual operation of the system in the eventof an emergencyand provide the end-user with the "End-user Guide" attached to the product.
22) Do not allow children or adults to stand near the product during operation.
23) Keep out of reach of children the remote radio controls and any controldevices. The a utomation could be operated unintentionally.
24) The end-usermust avoid any attempt to repairoradjust the a utomation personally. These operations must be camied out exclusively by qualified personnel.
25) What is not explicitly stated in these instructions is not permitted.

AUIOMATION SYSTEM 550 \& 550 MP

These instructions apply to the following models:

550 I-550 Slave

The FAAC 550 automation system is designed to operate residential counterbalanced up-and-over garage doors. It consists of an electromechanical operator, a control unit with courtesy light and a protective cover integrated into a single unit to be mounted on the garage doorpanel using the relevant accessories.
The irreversible system locks the door mechanic ally when the motorisnot running, so a lock isnot required. A manual release device allowsthe doorto be operated in the case of a power failure or malfunction.
Anti-crushing safety is assured by an adjustable electronic device.
The 550 automation system allows two operators ($5501+550$ Slave) to be installed on the same door.
The 550automationsystem hasbeendesigned and constructed for vehic le access control. Do not use for any other purpose.

1. DESCRIPIION AND TECHNICALSPECIFCATIONS

TABIE 1550 OPERATOR TEC HNIC AL SPECIFIC ATIONS

MODEL	550
Power supply	230V~(+6\% -10\%) 50Hz
Power consumption (W)	360
Max. torque (Nm)	300
Angular velocity ($\%$ sec)	12
Duty cycle (cycles/hour)	15 (without limit switc h)
	25 (with limit switch)
Temperature range	$-20 \div+55^{\circ} \mathrm{C}$
Geared motor weight (kg)	13
Housing protection	IP 31
	IP 44 (with Kit)
Max. door width (m)	3 (1 operator)
	4 (2 operators)
Max. door height (m)	2.7 (1 operator)
	3 (2 operators)
Max. door weight (kg/m²)	10
Clutch	electronic
Control unit	550MP
Geared motor dimensions LxHxD(mm)	see fig. 2
Technical characteristics of electric motor	
Speed (mm)	1400
Reduction ratio	$1: 700$
Thermal cutout on winding	$135{ }^{\circ} \mathrm{C}$
Power (W)	350
Cument draw (A)	1.5
Surge capacitor	$8 \mu \mathrm{~F}$
Power supply	$230 \mathrm{~V} \sim(+6 \%-10 \%) 50 \mathrm{~Hz}$

2. DIMENSIONS

3. ELEC TRICALINSTAШATION LAYOUT(standard system)

(1) 550 I operator with 550 MP control unit
(2) 550 Slave operator
(3) Flashing light
(4) Radio receiver
(5) Keyswitch
(6) Photocells
(7) Safety edge
-The cable cross-sections are expressed in mm^{2}
Fig. 3

4. INSTAШNG THEAUIOMATION SYSTEM

4.1. PREUMINARY CHECKS

To ensure safe, proper operation of the automation system, check the following:

- The door's structure must be suitable for automation. Make particularly sure that dimensions of the door meet the requirementsgiven in the technic al specific a tionsand that the door is sufficiently robust.
- Check the condition of the door bearings and joints.
- Check that the door moves smoothly. If necessary clean the tracks and lubric ate them with a silicone based lubricant. Do not use grease.
- Check that the door is correctly balanced.
- Remove the mechanicaldoorlocksso that when the door is closed it is locked only by the automation system.
- Check that there is a n effective earth connection for the geared motor.

The 550 automation system is designed to operate various types of counterbalanced up-and-over garage doors. Fig. 4 shows the most common types:
(1) single section outward swinging
(2) double section outward swinging
(3) single section inward swinging with horizontal tracks

4.2. POSTIONING TELESCOPIC ARMS

The gap between the existing balancing arm and the frame (distance "S1" in Fig. 5) must be at least 15 mm to allow the straight telescopic arms to rotate correctly.
If not, it is possible to use curved telescopic arms which can be installed over the top of existing balancing arms. Check that the gap between the doorpaneland the frame is at least 20 mm
 (distance "S2" in Fig. 5).

4.3. POSTIIONING OPERATOR/BACK PLATE

In accordance with the measurementsgiven in Table 1, install either a single operator (550 I) at the centre of the door as shown in Fig. 6 or two operators (one 550 I and one 550 Slave) at the sides of the door as shown in Fig. 7.
The operator550 isdesigned so that the geared motorunit can be installed with the drive shaft at two different heights (see section 6).
The following instructions apply to both assembly options, although they refer specific ally to installation of the operator with the geared motor unit as it is delivered from the factory.

4.4. ASSEMBLY SEQUENCE

Begin installation with the garage doorclosed and the operator released (see chapter 7).

1) Determine the position of the operator shaft as follows:

- single section outward swinging garage door (Fig. 8)

When the door is closed, the axis of rotation of the drive shaft must be about 10 cm lowerthan the axisof rotation of the door. The telescopic arms must be attached as close a spossible to the point where the door a m is fixed.

- double sectiongarage door (Fig. 9)
When the door is closed, the axis of rotation of the drive shaft must be about 10 cm below the axis of rotation of the door hinge (A).
The telescopic arms must be attached asclose a spossible to the point where the hinges are fixed to the door (B).
- garage doorwith horizontal guides (Fig. 10)
The axisof rotation of the drive shaft must be halfway between the two bearings. The telescopic arms must be attached asclose aspossible to the point where the upper and vertical guides meet.

2) Fix the back plate to the reinforcement ribbing of the door panel using suitable screws for the door's struc ture. It isad visable to use nuts and bolts.
OPosition the back plate in such a way that the last section without $\varnothing 4 \mathrm{~mm}$ holes (approximately 20 cm) is facing upwards.
OThe back plate hasa series of $\varnothing 8 \mathrm{~mm}$ holes which, when it is fixed, allow the operator to be installed at various heights. Check that the fixing position of the back plate allows the operatorto be installed in accordance with the previously determined shaft position.
In double operator insta llations, both shaftsmust be aligned at the same height.

Fg. 9

3) Fix the operator to the back plate using the nuts and bolts provided, as shown in Fig. 11.
4) Weld the uppertelescopic armfixing bracketsin the position described in the instructions for the specific type of garage door.
In the case of curved arm installation, the brackets can be welded directly to the existing doorarms.
Fix the outer profiles of the telescopic arms to the brackets using the pinsand the nutsand bolts provided, asshown in Fig. 11.
5) Fit the transmission shafts firmly onto the drive shaft a nd cut them to size as shown in Figs. 6 and 7.
O If limit switchesare used (optional), first fit the camsas shown in Fig. 11.
6) Mount the brackets on the transmission shafts and fasten them to the doorpa nelusing screws, ta king care to ma inta in perfect alignment.
7) Tighten the grub screws on the transmission shaft bushings.
8) Open the garage door and adjust the length of the telescopic arms as follows:

- straight arms (Fig. 12)

Place the telescopic arm in position as shown in figure 12. Cut the outer profile of the telescopic a m at point A.
Cut the inner profile at point B.

- curved ams (Fig. 13)

Place the telescopic arm in position as shown in figure 13. Cut the outer profile of the telescopic a m at point A.
Cut the inner profile at point B.

OLeave a gap of about 1 cm at the ends of both profiles.
9) Fit the innerprofile of the telescopic arm to the transmission shaft and weld securely.

4.5. ADJ USTING THE COUNIERWEIGHIS

On completing mechanical installation, check whether the door has become unbalanced by the weight of the operator and accessories.
If necessary, change the counterweights.
Foroptimum balancing, the door should rema in in equilibrium in an intermediate position (45°) with the operator released.
Also check that the door opens and closes smoothly without jerky or irregular movements.

5. START-UP

5.1. CONNECTING ELECTRONIC CARD

〇Before carying out any operation on the electronic card (connections, programming, maintenance) be sure to switch off the power supply.
Waming: Risk of exposure to high voltages when disc onnecting terminal blocksJ2 orJ3.
Follow points $10,11,12,13$ and 14 of GENERAL SAFETY OBLGATIONS.
Asshown in Fig. 3, prepare the conduitsa nd make the electric al connectionsbetween the 550 MP control unit and the chosen accessories.
Always route the power cables separately from the control and safety cables (pushbuttons, receivers, photocells, etc.). Use separate sheaths to avoid electric al disturbance.

5.1.1. 550MP CONTROL UNIT

The 550MP controlunitincluded in the 550I packa ge isc a pa ble of controlling both operatorsin the case of double installation. Instead of a control unit, the 550 Slave has an electronic interface card with a built-in courtesy lamp.

TABLE 2 550MP OPERATING PARAMETERS

Logic	a utomatic/semia utomatic
Pause time	adjustable by trimmer $4 \div 50 \mathrm{sec}$.
Operating time	adjustable by trimmer $4 \div 50 \mathrm{sec}$.
Max. starting torque	$\mathrm{Yes} / \mathrm{No}$
Closure stroke	$\mathrm{Yes} / \mathrm{No}$
Pre-flashing 3 sec.	$\mathrm{Yes} / \mathrm{No}$
Electronic clutch	adjustable by trimmer $38 \div 98 \%$
Operating time memory	Yes

TABLE3 550MP HARDWARE CHARAC TERISTICS

Power supply	230V~(+6-10 \%) 50 Hz
Max. power consumption	12VA
Max. motor load	800 W
Accessories power supply	24 Vdc
Max. accessories load	500 mA
Temperature range	$-20^{\circ} \mathrm{C}+55^{\circ} \mathrm{C}$
Safety fuses transf. primary/	transf. primary/transf. secondary/motor
Quick connector - fordeco	- for decoder or RP receiver cards -
Terminal blocks	pull-out
Terminal block inputs	Open Stop Closure safeties Limit switches
flashing light motor Terminal block outputs 230V \sim external courtesy light 24 Vdc accessories power supply	
Courtesy timing	90 sec .
Max. extemal courtesy lamp load	100W

5.1.2. 550MP CARD LAYOUT

Fig. 14

TABLE 4 550MP CARD COMPONENTS

F1	Fuse F1 5x20 2A/250V (transformer secondary)
F2	Fuse F2 5x20 4A/250V (motor)
F3	Fuse F3 5x20 0.5A/250V (transfomer primary)
LP1	Courtesy lamp 25W 220V E14
DL1	Mains power LED
DL2	Motor operation LED
DS1	Programming dipswitches
J1	230V ~ power input teminal block
J2	Motor output teminal block
J3	Flashing light and extemal courtesy light output terminal block
J4	Inputs/accessories low-voltage termina l block
J5	Quick connector for decoder/RP receiver cards
TR1	Operating time adjusting trimmer
TR2	Pause adjusting trimmer
TR3	Torque adjusting tnimmer (electronic clutch)

5.1.3. ELEC TRICAL CONNECTIONS

5.2. DESCRIPIION

5.2.1. TERMINAL BLOCKJ 1 (high voltage)

Terminalblockfor230V~50Hzpowersupply ($\mathrm{F}=$ =Phase $\mathrm{N}=$ Neutral). Connect the electrical system earth and the operator earth cable to the "Ground" terminal.

5.2.2. TERMINAL BLOCKJ2 (high voltage)

230V~teminal block forconnecting the electric motor.
Black cabie and brown cable =electric motor phases ($\mathrm{OP} / \mathrm{CL}$)
Bue CABLe = electric motor common (COM)
The surge capacitor must be connected in parallel with the phases.

5.2.3. TERMINAL BLOCKJ 3 (high voltage)

230V~teminal block for connecting:

- Flashing light (FLASH) max. 60W.
- Courtesy light of 550 Slave (EXT LAMP) or altematively an extemal courtesy light max. 100W.

5.2.4. TERMINAL BLOCKJ4 (low voltage)

FCC = Closure limit switch contact (N.C.)

The closure limitswitch (optional) consistsofa microswitch which is activated by the cam when the door reaches the c losed position and stopsmovementafter2 seconds.
FCA= Opening limit switch contact (N.C.)
The opening limit switch (optional) consists of a microswitch which is activated by the cam when the door reaches the open position and stops movement immediately.
O If limit switch devicesare not used, jumperFCC and FCA with the common inputs.
$\Theta=$ Common inputs/Accessonies power supply negative
= Accessories power supply positive 24Vdc (+)
The max. accessories load is 500 mA .
To calculate absorption values, referto the instructions for the individual accessories.
FSW= Closing safeties contact(N.C.)
The term "safeties" refers to any device (photocells, safety edges, etc.) with an N.C. contact that reverses the closing movement of the door when it detects an obstacle within the area it protects.
These devices have no effect during opening.
If the safeties are engaged when the door is closed, stopped oropen, they prevent it from moving.
To install a number of safety devices, connect the N.C. contacts in series.
Olf safety devices are not connected, jumper FSW with the common inputs.
STOP= STOP command (N.C.)
Anydevice (e.g.button) which stopsthe doormovement by opening a contact.
To install a number of stop devices, connect the N.C. contacts in series.
PIf Stop devices are not connected, jumper the STOP and common inputs.

OPEN=OPEN command (N.O.)

Any device (button, detector, etc.) which activates door opening (or closing) by closing a contact.
To install a number of Open devices, connect the N.O. contacts in parallel.

5.2.5. CONNECTORJ 5 (low voltage)

Connectorj 5 isused forquickconnection of MINIDEC, DECODER and RP RECEIVER cards.
Fit the accessoniesc ardsso that theircomponentside facesthe inside of the 550MP card.
Disconnect power before engaging or removing.

5.3. PROGRAMMING

To program operation of the automation, set the dipswitchesas shown in the following diagram.
© Disconnect the power supply momenta rily from the card after every programming operation.

SWI - Max. starting torque

The maximum starting torque a llowsthe elec tro nic clutch setting (Trimmer TR3) to be disabled in the initial movement phase.

SW2 - Operating logic

The operation of the a utomation in the variouslogic sisshown in Tables 5-6.

SW3-Closure stroke

The closure stroke is enabled only if the limit switc hes are used. It delays cut-out of the motor by 4 seconds after activation of the closing limit switch.

SW4 - Pre-flashing

It is possible to select 3 sec. pre-flashing of the flashing light prior to every movement. Thiswa msa nyone in the vic inity of the door that it is about to move.

TABIE 5	AUTOMATIC LOG IC		
	PULES		
DOORSTATUS	OPEN	STOP	SAIEIIES
CLOSED	opensthe doorand recloses afterpause time (1)	nbo effect	no effect (preventsopening)
OPEN ON PAUSE	closes(1)	stopscounting of pause time	freezespause until disengagement
CLOSING	reversesmovement	stops	reversesmovement
OPENING	stops	stops	no effect
STOPPED	closes/opens(1)(2)	no effect	no effect (preventsop/cl)
TABIE 6	SEMIAUTOMATIC LOGIC		
	PULSES		
DOORSTATUS	OPEN	STOP	SAFIIIES
CLOSED	opens(1)	no effect	no effect (preventsopening)
OPEN	closes(1)	no effect	preventsclosure
CLOSING	reversesmovement	stops	reversesmovement
OPENING	stops	stops	no effect
STOPPED	closes/opens(1)(2)	no effect	no effect (preventsop/cl)

(1) with pre-flashing selected, the movement begins after 3 sec
(2) giving an OPEN signal with the door stopped starts the opposite movement to the previous one.

5.4. TESTING THE AUIOMATION SYSTEM

Notes on operation:

-The 550MP card performs an electronic check (for which the motormust be connected) priorto every start-up. If a ny attempt is made to operate the card without the motorload orwith an insuffic ient load, voltage isnotsupplied to the motoroutputand LED DL2 fla shes to signal the fault.
-There must be a delay of at least 1.5 seconds between one OPEN signal and the next.
-The courtesy lightcomeson when the motorstartsand sta yson for about 90 seconds after the end of the movement.

5.4.1. CHECKING DIRECTION OF ROTATION

1) Tum off the power supply to the system.
2) Move the door manually to its half open position.
3) Lock the operator (see chapter 8)
4) Tum the power supply back on.
5) Send an open signal (OPEN) and check that this c auses the doorto open.
If the doorcloses, invert the electric motor phase wires on the card terminal block (brown and black wires).
In the double operator installation, connect the same colour wires to the COM, OP and CLterminalson the 550MP card and the 550 Sla ve card. If you have to invert the wires, invert them on both motors.

5.4.2. SEIING THE OPERATING TIME

Set trimmer TR1 to obtain an operating time such that the electric motor remainspowered up fora few secondsafterthe door has reached the mechanical stops.
This setting also represents the maximum time for reaching the limit switc hes (optional).

5.4.3. SETING PAUSE TIME

By selecting automatic logic it is possible to set the pause time by means of the trimmer $\mathbb{R} 2$.

5.4.4 SETING EIFC TRONIC CLICH(ANTI-CRUSHING SAFEIY SYSTEM)

The 550MP control unit isequipped with a electronic system for regulating the motortorque which limits the thrust of the door when obstructed by an obstacle (depending on the setting). When the obstac le isremoved, the doorcontinuesitsmovement until it reaches the limit switch or until the end of the operating time.
The setting is made by means of trimmer TR3.
Make sure that the electronic clutch iscalibrated in accordance with current applic able legislation.

Tuming the trimmerclockwise inc reasesthe set values.
Tuming the trimmerantic lockwise reduces the set values.

Fig. 16

5.4.5. ADJ USTMENTOF UMITSWTCHES (OPIONAL)

Open the doorasfaras required, then tum the cam until it just trips mic roswitch FCA (Fig.11).
Close the door, then tum the cam until it just trips mic roswitch FCC (Fig.11).
Tighten the screws on the cams.

5.4.6. MOUNTING COVER

Connect the OPEN cable to the button on the operatorcover. Fasten the cover in place by tightening the four screws at the sides.
Push the 2 plastic capsonto the side slotson the covernot used by the operator shaft.
Push the plastic cap onto the unused front slot on the coverfor gaining access to the release system.

6. MOUNTING GEARED MOTOR UNIT

Depending on requirements, the geared motor unit can be mounted in two different ways:
-With the drive shaft at the top (Fig. 17)
The card support is fixed to the geared motor by means of 4 bolts which engage with nuts inserted in the guides.
-With the drive shaft at the bottom (Fig. 18)
The card support is fixed to the electric motorcap by means of 4 screws.

The coverisdesigned forboth a pplic ations(note that in the two casesthe release device is located in different positions). There are also two tabs for fixing the power cable to the clear light fixture (Fig. 19).
Figs.17-18 also show the recommended layout for routing and fixing the cables in the card support.

Fig. 18

KEYTO CABLES

(1) Flashing light
(2) Extemal courtesy light
(3) OPEN button on cover
(4) Low-voltage connections
(5) 550 Slave motor
(6) 230V~power supply
(7) 5501 motor

7. MANUALOPERATION

The operator 550 is equipped with an emergency release device that can be operated from inside the garage. On request, a lock can be fitted to the doorpanel which allowsthe release device to be operated also from outside the garage. If the door hasto be operated manually due to a powerfailure ora malfunction of the automation system, operate the release device as follows:

- From inside (Fig. 20)

Insert the hexwrench provided and tum clockwise about half a tum until the stop is reached.
Waming:depending on the type of installation, the release device may be on the right (A) or left (B).

- From outside (Fig.21)

1) Open the safety door and insert the wrench.
2) Tum antic lockwise asfaraspossible and remove the lockunit. 3) Insert the hexwrench provided and tum antic lockwise a bout half a tum until the stop is reached.

8. REIURNING TO NORMALOPERATION

To prevent an accidental movement from activating the door during the operation, disconnect the power supply from the system before locking the operator again.

- From inside (Fig.20)

Insert the hex wrench provided and tum anticlockwise about half a tum until the stop is reached.
Note:depending on the type of installation, the release device may be on the right (A) or the left (B).

- From outside (Fig.21)

1) Insert the hexwrench provided and tum clockwise about half a tum until the stop is reached.
2) Remove the hex wrench and insert the lock unit.
3) Tum the wrench clockwise so that it can be removed; close the safety door again.

9 MAINIENANCE

Camy out the following operations at least every six months:

- Check that the motor torque is set correctly.
- Check the door's rollers and sliding guides; clean and lubricate if necessary.
- Check the effic iency of the release system.
-Check the efficiency of the safety devices.

10 REPAIRS

For repairs contact authorised FAAC Service Centres.

Fig. 19

User's guide

550 AUIOMATION SYSTEM

Read the instructions carefully before using the product and keep for future reference.

GENERAL SAIETY RUES

If correctly installed and operated, the 550 automation systems ensure a high level of safety.
However, some simple rules should be followed to avoid accidents:

- Do not stand undemeath the garage door.
- Do not stand in the vicinity of the a utomation or a llow a nyone else, especially children, to do so and do not place objects in the vicinity of the automation. This is particularly important during operation.
- Keep remote controls and other control devices out of the reach of child ren to prevent them from accidentally operating the door.
- Do not allow children to play with the automation.
- Do not deliberately obstruct the movement of the door.
- Make sure that branches or bushes do not interfere with the movement of the door.
- Keep the luminoussigna lling systemseffic ient and c learly visible.
- Do not attempt to operate the door manually without first releasing it.
- In the event of a malfunction, release the gate to allow access and call a qualified technician for service.
- Aftersetting manualoperation, disc onnect the elec tricity supply from the system before retuming to normal operation.
- Do not make any modifications to components belonging to the automation system.
- Do not attempt to perform any repair work or ta mper with the automation. Call FAAC qualified personnel for repairs.
- At least once every six months ha ve the automation, the safety devices and the earth connection checked by a qualified technician.

DESCRIPION

The 550 automation system is ideal for operating residential counterweighted up-and-over garage doors.
It consists of an electromechanical operator, a control unit with courtesy light and a protective cover integrated into a single unit to be mounted on the garage door panel using the relevant accessories.
The irreversible system locks the door mechanically when the motor is not running, so a lock is not required. A manual release device allows the doorto be operated in the event of a power failure or malfunction.
Anti-c rushing sa fety isassured by an adjustable electronic device.
The 550 automation system allows two operators ($5501+550$ Slave) to be installed on the same door.
The door is normally closed. When the control unit receives an opening signal via the radio control or another control device, it activates the electric motor which rotates the door to the open position to allow access.
If a utomatic operation hasbeen set, the doorcloses again after the selected pause time.
If semiautomatic operation has been set, a second signal must be given to close the door again.
Giving an opening signal while the door is opening always causes the door to stop moving.
Giving an opening signal while the door is closing causes the door to reverse its direction of movement.
A stop signal (if a vailable) always stops the door.
Ask the installation engineer if you need further information on operation of the door in the various operating logics.
The automation systems may include safety devices(photoc ells) which prevent the door from closing when an obstacle lieswithin the area they are protecting.

The 550 automation systems are provided as standard with an anti-crushing sa fety device whic h limits the to rque transmitted to the door.
The doorcan be opened manually by using the release system. The light flashes to indic ate that the gate is moving.
The courtesy light comes on when the motor starts and remains on for about 90 seconds after it has stopped.

MANUALOPERATION

The 550 operator isequip ped with an emergency release device that can be operated from inside the garage. On request, a lock can be fitted to the doorpanel to allow the release device to be operated from outside.
If the doorhasto be operated manually due to an electric power failure ormalfunction of the automation, use the release device as follows:

- From inside (Fig. 1)

Insert the hex wrench provided and tum it about half a tum clockwise until it stops.
Note: depending on the type of installation, the release device may be on the right (A) or left (B).

- From outside (Fig. 2)

1) Open the safety door and insert the wrench.
2) Tum antic lockwise asfar aspossible and remove the lock unit. 3) Insert the hex wrench provided and tum antic lockwise about half a tum until the stop is reached.

REIURNING TO NORMALOPERATION

To prevent an accidental movement from activating the door during this operation, disconnect the power supply from the system before locking the operator again.

- From inside (Fig. 1)

Insert the hexwrench provided and tum antic lockwise about half a tum until the stop is reached.
Note: depending on the type of installation, the release device may be on the right (A) or the left (B).

- From outside (Fig. 2)

1) Insert the hex wrench provided and tum clockwise about half a tum until the stop is reached.
2) Remove the hex wrench and insert the lock unit.
3) Tum the wrench clockwise so that it can be removed; close the safety door again.
