BioEntry™ 설치 안내서

BioEntry[™] Smart / Pass

버전 1.1

㈜슈프리마, BioEntry™와 BEACon™은 (주)슈프리마의 상표로 등록되어 있으며 모든 권리는 (주)슈프리마에 있습니다. 이에 관하여 저작권이 미 치는 제품의 모든 부분은 (주)슈프리마의 서면 승인 없이는 어떠한 형태 나 수단(그래픽이나 사진복사, 녹음, 비디오녹화 또는 정보 검색 방식을 포함하는 전자적, 기계적인 수단)에 의해 재생산 또는 복제될 수 없습니 다. 라이센스를 획득하여 제공되는 소프트웨어는 이러한 라이센스에 의 거한 범위에서만 사용되거나 복제될 수 있습니다.

(주)슈프리마는 공지 없이 이 문서의 부분 또는 전부를 수정하거나 개정 할 수 있는 권리를 보유하고 있으며, 이들 자료에 의거하여 발생된 간접 손실을 포함한 손실, 비용 또는 손상에 대하여 책임지지 않습니다.

Copyright © 2005 by Suprema Inc.

슈프리마의 보증정책

슈프리마는 구매자에게, 아래 설명된 범위에서 제품이 배송된 날짜로 부터 일년("보증기간")동안, 이 제품이 공시된 제품 사양에 따라 작동 할 것임을 보증합니다. 만약 구매자가 보증서에 의해 보장된 결함을 보증기간 안에 서면으로 슈프리마에 통지할 경우, 슈프리마는 임의로 구매자가 미리 지불한 보증기간, 운송료와 보험 한도에서 반송된 불량 품을 수리하거나 교환해 줄 것입니다. 이러한 수리나 교환은 제품과 관련한 보증 위반에 대한 슈프리마의 한정적인 구제책입니다. 이 제한 된 보증은 다음과 같은 경우의 제품에 대해서는 보장되지 않습니다:(i) 이례적인 물리적 또는 전기적 압력, 잘못된 사용, 부주의, 사고 또는 다른 외부적 요인들에 의해 손상된 경우;(ii) 공급자에 의해 서면으로 승인되지 않은 여하간의 부적절한 수리, 개조 또는 변경된 경우;(iii) 슈프리마가 제공한 안내서 내용을 위반하여 부적절하게 설치하거나 사 용한 경우

슈프리마는 결함들이 나타난 후 30일까지 그리고 제품들이 배송된 날 로부터 최근 일 년까지 슈프리마가 제공하는 RMA 보고서에 이러한 결함들을 서면으로 통보 받을 것입니다. 이 보고서에는 각 불량 제품, 모델 번호, 송장 번호와 일련 번호에 대한 상세한 설명이 있어야 합니 다. 슈프리마에 의해 발행된 RMA 번호가 없는 제품은 인정되지 않을 수 있으며 모든 결함은 보증 서비스를 위해 재현되어야 합니다.

여기에 명백히 규정된 것을 제외하고는 특정 목적을 위한 보증성, 상 업성 또는 적합성 등에 관련해서는, 명시적 묵시적이든 어떤 종류의 보증 없이 제품은 있는 그대로 슈프리마에 제공됩니다.

경고문

이 문서에 있는 정보는 슈프리마 제품과 관련하여 제공됩니다. 지적재 산권에 대한 어떠한 라이센스도 이 문서에 의해 부여되지 않습니다. 제품 판매에 관하여 슈프리마와의 교섭과 조건에 따라 제공되는 경우 는 예외로 합니다.

슈프리마는, 특정 목적을 위한 적합성, 상업성 또는 특허, 저작권, 다 른 지적재산권의 어떠한 침해와 관련하여, 보증책임을 포함한 슈프리 마 제품의 판매 또는 사용에 관하여, 여하간의 책임을 지지 않으며, 보증을 하지 않습니다.

슈프리마 제품이 의학적 상황, 인명 구조, 생명 유지 등에 사용되거나 슈프리마 제품의 오류로 인해 인명 상해나 사망을 야기할 수 있는 상 황에 적용되어 사용되는 것은 고려되지 않았습니다. 구매자가 슈프리 마 제품을, 무단으로 이러한 경우에 적용하여 사용한다면, 구매자는, 이러한 무단 사용과 관련하여 인명 상해 또는 사망과 관련한 어떠한 클레임으로 인해 직간접적으로 야기되는 모든 청구, 비용, 손해, 지출 과 변호사 비용등에 대해서, 슈프리마, 그의 임원, 고용인, 자회사, 계 열회사와 판매자들에게, 설령 슈프리마가 그 부분의 설계나 생산을 간 과했다고 클레임에서 주장되더라도, 해가 없도록 보상하고 보호해야 할 것입니다.

슈프리마는 제품의 신뢰성, 기능 또는 설계 사항을 향상시키기 위해, 공지 없이 어느 때라도 규정과 제품내용을 변경할 수 있는 권리를 보 유합니다. 설계자는 "유보된" 또는 "불확정적인"이라고 표시된 어떠한 특징이나 사용설명의 특성이나 부재를 신뢰해서는 안됩니다. 슈프리마 는 장래 규정에 대해 이러한 권리를 보유하고 있으며 이에 대한 장래 변경사항으로부터 야기되는 상충성이나 비호환성의 문제에 대하여 어 떠한 책임도 지지 않을 것입니다.

가장 최근의 제품 사양이 필요하거나 제품주문 전에 슈프리마, 지역 슈프리마 판매 대리점에 연락하여 주시기 바랍니다.

주: 제3자의 상표와 명칭은 해당 권리자의 소유입니다.

BEACon™에 대해서

BEACon™은 내장형 LCD와 키패드를 가진 단일 출입문 컨트롤러입니 다. BioEntry와 연결되면, 호스트 PC가 없어도 되기 때문에 응용제품의 보안 등급을 향상시킵니다. 간단한 작동 방법과 아울러 BEACon은 비 용 효율적인 면에서 단순한 출입 통제 시스템이 필요한 소규모의 사무 실에서 가장 적합할 것입니다.

㈜슈프리마에 대해

슈프리마는 지문인식 핵심기술과 각종 응용제품을 공급하는 세계 최고 의 지문인식 보안업체입니다. 슈프리마의 지문인식 기술은 편의성과 보안성을 겸비한 최고의 본인 인증수단으로서 출입보안, 정보보안, 금 융보안 등 다양한 분야에 적용되고 있습니다. 슈프리마의 지문인식 기 술은 지문 인증 컨테스트(FVC 2004)에서 가장 낮은 에러율을 기록함 으로써, 세계적으로 가장 신뢰성 있는 솔루션으로 인정 받았습니다. 슈 프리마의 지문관련 제품은 세계 70 여 개국에 판매되었으며 다양한 응용제품에 쓰이고 있습니다.

슈프리마의 기술과 제품에 대한 더 많은 정보를 원하시면, 슈프리마 웹사이트(<u>http://www.supremainc.com</u>)를 방문하시거나 이메일(<u>sales@s</u> <u>upremainc.com</u>) 주시기 바랍니다.

이 사용설명서에 대해

본서는 BioEntry™ Smart와 Pass의 설치에 대한 안내서입니다. 이 안 내서에는 설치 방법, BioEntry™을 위한 예제들과 기술적인 세부사항들 이 수록되어 있습니다. 이 안내서는 BioEntry™ Smart와 Pass를 사용 시 지침사항과 경미한 문제들을 해결하는데 그 목적이 있습니다.

목	차
---	---

1.	BioEntry™를 시작하기 전에	9
	1.1. 포함된 항목	9
	1.2. 필요 항목	9
	1.3. 선택 항목	9
2.	BioEntry™ 설치	10
	2.1. 배선 연결	10
	2.2. 전원 연결	11
	2.3. Wiegand 호환 리더에 연결	11
	2.4. Wiegand 호환 출입 통제기에 연결	11
	2.5. Data/Clock 호환 출입 통제기에 연결	12
	2.6. 호스트 PC에 연결	12
	2.6.1. RS-232C 인터페이스를 통해 연결	12
	2.6.2. 전이중 BioEntry 네트워크 시스템을 위한 RS-485 인터페이스를 통한 연결	12
	2.6.3. 반이중 BioEntry 네트워크 시스템을 위한 RS-485 인터페이스를 통한 연결	14
	2.6.4. 보조 인터페이스를 통해 연결	15
	2.7. 해체하기	16
	2.8. 타공판	17
	2.9. BioEntry 다시 조립하기	18
	2.10. BioEntry™Admin 소프트웨어 설치	19
3.	BioEntry™ 설치에 대한 예제	20
	3.1. 새로운 시스템 구축	20
	3.1.1. BioEntry Pass 설치	20
	3.1.2. BioEntry Smart 설치	20
	3.2. 기존 출입 통제 시스템에 BioEntry 추가	21
4.	세부 사항 Specifications	23
	4.1. 지문 인증 세부 사항	23

http://www.supremainc.com

	4.1.1.	지문 인증 성능	23
	4.1.2.	지문 센서 세부 사항	23
	4.1.3.	정보 저장 용량	23
	4.2. 기계적	세부사항	23
	4.2.1.	작동 범위	23
	4.2.2.	Absolute maximum ratings	23
	4.2.3.	전기적인 DC 특징	24
	4.3. 스마트	카드 세부사항	24
	4.4. 자재 정	d 보 Material information	24
	4.5. RTC 비	배터리 사양	25
5.	보증 정	보. Certification information	26
	5.1. CE		26
	5.2. FCC		26

그림목차

그림	1>	전원 연결	11
그림	2>	전이중 방식 BioEntry 네트워크	13
그림	3>	반이중 방식 BioEntry 네트워크	14
그림	4>	스테레오 플러그를 DB-9 케이블에 연결하기	15
그림	5>	보조 포트	16
그림	6>	보조 활성 스위치 Aux. enable switch	16
그림	7>	나사 제거하기	17
그림	8>	케이스 분리하기	17
그림	9>	뒷판을 벽면에 설치하기	18
그림	10>	› 케이스 다시 조립하기	18
그림	11>	BioEntry 연결도	20
그림	12>	> 기존 시스템에 BioEntry Pass 추가하기	22

개정 연혁

버전	날짜	설명
V1.0	2005.9.27	생성됨.
V1.1	2005.12.2	제2.1장 연결 배선 편에 ABA Track II wiring이 추
		가됨.

1. BioEntry™를 시작하기 전에

1.1. 포함된 항목

- BioEntry Smart/Pass 지문리더기
- DB-9 케이블에 연결하는 스테레오 플러그
- 별모양 렌치
- 페라이트 코어 2개
- 빠른 시작 안내서
- 벽면 브라켓 타공도면

1.2. 필요 항목

- 9~24V @ 500mA 범위의 DC 전원 공급
- Wiegand 입력 포트 또는 Data/Clock 입력 포트를 가진 출입 통제 패널

1.3. 선택 항목

● Wiegand 출력 포트를 가진 리더

2. BioEntry™ 설치하기

2.1. 배선 연결하기

BioEntry는 리더쪽에 접속용 전선 케이블을 통해 보안 시스템의 다른 장치들 에 연결됩니다.

전선 색과 신호에 대해 표 1를 보십시오...

전선 색	신호	설명
피복Shield (나선)	EARTH GND	접지
파랑색에 노란선		사용안함
검정색에 흰선	INO	TTL 입력 0
검정색	IN1	TTL 입력 1
갈색에 흰선	OUT0	TTL 출력 0
갈색	OUT1	TTL 출력 1
빨강색에 흰선	IO_GND	IO 신호를 위한 GND
빨강색	DCO_STRB	Data/Clock 출력, Strobe
주황색에 흰선	WO_GND	Wiegand 출력, GND
주황색	WO_VREF	Wiegand 출력, VREF
노랑색에 흰선	WO_D0	Wiegand 출력, Data 0 또는 Data/Clock 출력, Card Present
노랑색	WO_D1	Wiegand 출력, Data 1 또는 Data/Clock출력, Data
녹색에 흰선	WI_D0	Wiegand 입력, Data 0
녹색	WI_D1	Wiegand 입력, Data 1
파랑색에 흰선	COM_GND	Comm. GND (RS-232C를 위해)
파랑색	WI_GND	Wiegand 입력 GND
보라색에 흰선	RX2	정보를 받음, RS-232C 레벨
보라색	TX2	정보를 전송, RS-232C 레벨
회색에 빨간선	RX+	RX+, RS-485 레벨
회색	RX-	RX-, RS-485 레벨
흰색에 빨간선	TX+	TX+, RS-485 레벨
흰색	 TX-	TX-, RS-485 레벨
녹색에 노란선	POW_GND	전원 GND
빨강색에 노란선	POW+	전원 입력

<u>표 1> BioEntry 전선 색</u>

경고: 주의를 기울려 선들을 구별해야 합니다. 부적절한 배선으로 인해 장치에 영구적 인 손실 또는 인체에 상해를 줄 수 있습니다.

Copyright © 2005 by Suprema Inc.

http://www.supremainc.com

2.2. 전원 연결

BioEntry를 9~24V, 500mA DC 전원에 연결하기 위해 'POW+'와 'POW_GND' 선들을 사용합니다. 전선의 저항과 정전기 방출을 최소화하기 위해 전원 케이 블은 가능한 한 짧아야 합니다.

최적의 정전기 방출 저항과 안전을(ESD : resistance and safety) 위해 '접지'에 올바르게 연결해 주시기 바랍니다.

FCC와 CE 규정에 따라, 접지에 올바른 연결을 해야 하며 부가적인 페라이트 코어는 전원선쪽으로 설치되어야 합니다. R&TTE 지시(directive)하에서 FCC와 CE을 위해 페라이트 코어 설치는 필수적입니다. 세부적인 설치 사항에 대해 서는 그림 1을 참조하시기 바랍니다.

2.3. Wiegand 호환 리더에 연결하기

BioEntry는 26비트 표준을 포함한 다양한 포맷의 Wiegand 호환 리더를 지원 합니다.

'WI_DO', 'WI_D1'와 'WI_GND' 선들을 'Data 0', 'Data 1'와 Wiegand 리더의 접 지 신호에 각각 연결합니다. 입력 신호는 전압을 DC 12V까지 허용할 수 있 습니다.

2.4. Wiegand 호환 출입 통제기에 연결하기 BioEntry는 Wiegand 입력 포트를 가진 대부분의 출입 통제제품을 위해 호환 이 되는 Wiegand 출력 인터페이스를 지원합니다.

'WO_DO', 'WO_D1'와 'WO_GND' 선들을 'Data 0', 'Data 1'과 출입 통제기의 접 지 신호에 각각 연결합니다. 출입 통제기의 입력 신호 레벨이 5.0V를 초과하 면, 좀 더 높은 출력 전압 신호를 얻기 위해 'WO_VREF'에 필요한 전압을 공 급합니다. 특히 전원이 DC 5V 보다 낮을 때에는 'WO_VREF'를 전원에 직접 연결하지 않도록 주의해야 합니다. 장치의 과도한 전류와 손상을 방지하기 위 해 다이오드와 몇 백 ohms의 전류 제한 저항을 사용합니다. 그러나 대부분의 출입 통제제품은 5V Wiegand 신호를 받아들이므로 'WO VREF' 신호는 안전하게 연결되지 않은 채로 있을 수도 있습니다.

2.5. Data/Clock 호환 출입 통제제품에 연결하기

BioEntry는 Data/Clock 입력 포트를 가진 출입 통제제품을 위해 Data/Clock 출력 인터페이스를 지원합니다. 출력 포맷은 ABA track II입니다. 구체적인 설 정과 포맷을 위해 사용설명서를 참조하시기 바랍니다.

Data/Clock 인터페이스는 Wiegand 출력 포트와 신호를 공유합니다. 포트가 Data/Clock 인터페이스로 설정되었다면, 'WO_D0'가 card present signal로 동작 하고 'WO_D1'는 data strobe인 부가된 'DCO_STRB' 신호와 동기화된 정보를 내보냅니다. 'WO_D0', 'WO_D1', 'DCO_STRB'와 'WO_GND' 신호들을 'Card Present', 'Data', 'Strobe' 신호들과 출입통제기의 접지 신호(signal ground)에 각 각 연결합니다.

2.6. 호스트 **PC**에 연결하기

BioEntry는 다음과 같은 호스트 PC에 연결하는 다양한 방법들을 제공합니다: RS-485 네트워크의 일부가 됨, RS-232C 인터페이스에 직접 연결과 랩톱 컴 퓨터를 위한 보조 포트. 이러한 인터페이스들은 내부에서 다중화되어 있어서 1개 인터페이스만이 연결되어야 합니다. 동시에 2개 이상의 인터페이스를 사 용하는 것은 지원되지 않습니다.

- 2.6.1.
 RS-232C 인터페이스를 통해 연결하기

 'RX2', 'TX2'와 'COM_GND' 선들을 'TX', 'RX'와 PC의 직렬 포트의 접지 신호 (signal ground)에 연결합니다.
- 2.6.2. 전이중 BioEntry 네트워크 시스템을 위한 RS-485 인터페이스를 통한 연결
 전이중 BioEntry 네트워크에 접속하기 위해 'RX+', 'RX-', 'TX+', 'TX-' 신호들을 사용합니다.
 전이중 네트워크를 위해 실드 케이블에서 2쌍의 차폐연선이 필요합니다.

BioEntry 네트워크 시스템의 모든 BioEntry 장치들에서 각 신호는 다분기점 네트워크를 형성하도록 연결되어야 합니다. PC가 네트워크 시스템의 주가 되므로 컴퓨터의 'TX+'와 'TX-' 신호들을 BioEntry 신호의 'RX+'와 'RX-' 에 연결하거나 그 반대로 연결합니다(그림 2를 참조).

네트워크의 각 말단에서, 임피던스를 일치시키기 위해 '+'와 '-' 신호 사이에 120ohms의 터미네이션 저항을 연결해야 합니다.

접지에 연결하십시오.

2.6.3. 반이중 BioEntry 네트워크 시스템을 위한 RS-485 인터페이스를 통한 연결
반이중 네트워크를 위해 실드 케이블에서 1쌍의 차폐연선이 필요합니다.
반이중 네트워크 모든 장치들에서 네트워크에 연결하기 전에 'TX+'와 'RX+' 그리고 'TX-'와 'RX-'를 연결합니다(그림 2을 참조).
네트워크의 각 마지막단계에서, 임피던스를 일치시키기 위해 '+'와 '-' 신호 사이에 1200hms의 터미네이션 저항을 연결해야 합니다.

경고: ground loop를 방지하고 통신 문제를 피하기 위해 케이블 실드를 한 곳에서만 접지에 연결하십시오.

 2.6.4. 보조 인터페이스를 통해 연결하기
 BioEntry[™] 시리즈는 설치시 장치가 연결되어 있지 않아도 랩톱 컴퓨터를 연 결을 위한 보조 포트를 제공합니다. 사용자는 표준 RS-232C 포트를 가진 장 치에 접속하고 그런 장치를 관리할 수 있습니다.

> 이 포트는 접속용 전선에서 RX2와 TX2 신호들에 의해 내부적으로 다중화되 어 있어서 보안을 향상시키기 위해 비활성화될 수 있습니다.

그림 4> 스테레오 플러그를 DB-9 케이블에 연결하기

Copyright © 2005 by Suprema Inc.

<u>그림 5> 보조 포트</u>

그림 6과 같이 보안을 위하여 보조 포트의 기능성을 제어하기 위해 BioEntry 는 포트를 절연시킬 수 있는 슬라이드 스위치를 제공합니다. 기본적으로 이 스위치는 포트를 활성화하는 아래쪽 위치에 설정되어 있습니다. 포트를 비활 성화하기 위해서는 작은 드라이버나 펜으로 스위치를 위쪽으로 움직이게 합 니다.

스위치가 활성화 된 동안 스테레오 플러그가 이 포트에 꽂혀 있다면, 접속용 전선 케이블에 RX2와 TX2 신호들은 시스템으로부터 분리됩니다. 이러한 특 징은 2개의 인터페이스간의 신호 충돌을 피하기 위해 구현되었습니다. 그러 나 스위치가 비활성화되면 보조 포트의 상태에 관계없이 RX2와 TX2 신호들 은 연결된 상태로 있습니다.

<u>그림 6> 보조 활성 스위치 Aux. enable switch</u>

2.7. 해체하기

BioEntry의 밑바닥의 나사를 제거합니다.

<u>그림 7> 나사 제거하기</u>

덮개의 밑바닥을 들어서 위로 밀고 주의하여 제거합니다.

<u>그림 8> 케이스 분리하기</u>

2.8. 타공판뒷판을 벽면에 설치합니다.

그림 9> 뒷판을 벽면에 설치하기

2.9. BioEntry 다시 조립하기

그림 10> 케이스 다시 조립하기

2.10. BioEntry[™] Admin 소프트웨어 설치 사용 설명서를 주의 깊게 읽어보시기 바랍니다.

3. BioEntry™ 설치에 대한 예제

BioEntry™ Smart/Pass는 보안 등급을 향상시키고 보안 시스템에 쉽게 구현될 수 있는 Wiegand 입력/출력, 범용 I/O 신호와 통신 포트와 같 은 다양한 인터페이스를 제공합니다.

3.1. 새로운 시스템 구축하기

BioEntry™ Smart/Pass는 Wiegand 인터페이스를 가진 대부분의 출입 통제기 와 호환됩니다. BioEntry로 새로운 출입 통제기를 구축하는 것은 보편적인 Wiegand 리더를 구축하는 것만큼 간단하고 용이합니다. 이 절에서는, BioEntry를 지닌 시스템의 설정에 대해서만 기술하고 있습니다. BioEntry 설치 를 위한 최소 설정에 대해 그림 11에 설명되어 있습니다.

<u>그림 11> BioEntry 연결도</u>

3.1.1. BioEntry Pass 설치하기

BioEntry™ Pass 시리즈는 1:N 인식 모드에서 작동하고 내부 플래쉬 메모리 에 9000개의 지문인식정보를 저장할 수 있습니다. 출입 통제 시스템은 슈프 리마의 빠르고 신뢰할 수 있는 1:N 인식 알고리즘에 의해 보안됩니다. 사용자 등록 과정은 관리자의 컴퓨터에서 처리되며 지문정보는 BioEntry 네트 워크상의 각 리더로 배분됩니다.

3.1.2. BioEntry Smart 설치하기

BioEntry[™] Smart 시리즈는 사용자의 지문인식정보를 스마트카드에 저장하고 사용자 관리를 용이하게 하며 설치 문제들을 간단하게 합니다. 사용자 등록 과정은 관리자의 컴퓨터에서 처리됩니다. 지문 정보는 네트워크 상의 각 리더에게 분배되는 대신에 각 사용자가 소지하는 스마트카드에 저장 됩니다. 지문 정보가 BioEntry와 물리적으로 분리되어 있어 제3자에 의한 고 의 파손 행위로부터 보호 받을 수 있으므로, 이러한 단순한 구조는 사용자 관 리 과정을 매우 쉽게 하고 전체적인 보안성을 향상시킵니다. 또한 사용자 관 리를 네트워크 설치에 의존하지 않기 때문에 설치에 대한 전체 비용이 최소 화됩니다.

3.2. 기존 출입 통제 시스템에 BioEntry 추가하기

사용자 인식을 위해 Wiegand 리더를 사용하는 출입 통제 시스템은, 인식 시 스템을 기반으로 하는 이전 근거리 카드(legacy proximity card)의 보안성 향 상을 위해 Wiegand 리더와 출입 통제기 사이에 BioEntry를 추가하여 업그레 이드될 수 있습니다.

- 이 모드에서는, 사용자 인식이 다음 순서에 따라 수행됩니다:
- 사용자는 인식 과정을 초기화하기 위해 근거리 카드를 Wiegand 리더 위
 에 놓습니다.
- Wiegand 리더는 Wiegand 포트를 통해 사용자의 ID를 전송합니다.
- BioEntry Pass는 사용자의 지문정보를 획득하여, 플래쉬 메모리에 저장된 사용자의 지문인식정보와 1:1 인식을 수행합니다.
- 획득된 지문정보와 플래쉬 메모리에 저장된 지문정보가 일치하면, BioEntry Pass는 Wiegand 리더인 것처럼 시용자 ID를 출입 통제기에 전송합니다.
- 출입 통제기는 앞으로의 인증을 위해 사용자 ID를 처리합니다.

4. 세부 사항 Specifications

4.1. 지문 인증 세부 사항

4.1.1. 지문 인증 성능

EER*	<0.1%
등록 시간	<1 sec
인증 시간	<1 sec

*EER은 특정 데이터베이스에 따라 달라집니다.

4.1.2. 지문 센서 세부 사항

모 델	BioEntry OP	BioEntry TC	BioEntry FC	
⊼⊦⇒ोाम	Suprema	UPEK TouchChip	Atmel Fingerchip	
13 A B	Optical sensor I	TCS1CD	AT77C101B-CB02	
센서 종류 Optical		Capacitive	Thermal	
획득 방법	Touch	Touch	Swipe	
Sensing area	16.0mm x 19.0mm	12.8mm x 18.0mm	14.0mm x 0.4mm	
영상 크기(pixels)	272x320	256x360	360 x 500	
영상 해상도	500 dpi	508 dpi	500 dpi	

4.1.3. 정보 저장용량

지문인식정보 용량	9,000 at 4M Flash (19,000 at 8M)
LOG 용량	12,800 event

4.2. 기계적 세부사항

4.2.1. 작동 범위

매개값	Symbol	Min	Max	Units
공급 전압	V _{IN}	9	24	V
동작 온도 (TC,OP)	T _{OP}	0	70	°C
동작 온도 (FC)	T _{OP}	-20	70	°C
습도(non-condensing)			85	%

4.2.2. Absolute maximum ratings

매개값	Symbol	Min.	Max.	Units
전원 장치 전압	V _{DD}	-0.3	28	V

Wiegand 입력 핀에 대한 입력 전압	V _{IN}	-0.3	14	V
------------------------	-----------------	------	----	---

4.2.3. 전기적인 DC 특징

매개값	Symbol	Min	Тур.	Max	Units
공급 전류	I _{DD}		200	500	mA
Wiegand 입력 포트	Symbol	Min	Тур.	Max	Units
High level input voltage	V _{WIH}	3.3		12	V
Low level input voltage	V _{WIL}	-0.3		2.0	V
Wiegand 출력 포트	Symbol	Min	Тур.	Max	Units
High level output voltage	V _{WOH}		5.0	12	V
Low level output voltage	V _{WOL}		0.0		V
Current source/drain	I _{wo}		-1/20		mA
ⅢL 입력 포트	Symbol	Min	Тур.	Max	Units
High level input voltage	V _{IH}	2.0		5.5	V
Low level input voltage	V _{IL}	-0.3		0.8	V
Ⅲ 출력 포트	Symbol	Min	Тур.	Max	Units
High level output voltage	V _{OH}		5.0		V
Low level output voltage	V _{OL}		0.0		V

4.3. 스마트카드 세부사항

매개값	값 value
안테나 형	PCB loop antenna (60mm x 57mm)
Connection with transceiver	Permanent
제조사 / 모델	Dual I, DE-KTFMI
동작 주파수 범위	13.553 ~ 13.567MHz
충격 계수 Duty cycle	100%

4.4. 자재 정보 Material information

구성항목	रोनो / □ छो	제조사	
Component	시에 / 노월		
PCB	FR-4,	Doosan Electronics	
외장형 하드		LG Chem, Ltd.	
Enclosure	AD3, FIF-300		
배터리	CR2032	Hitachi Maxell, Ltd.	

4.5. RTC 배터리 사양

매개값	값
모델	CR2032
제조사	Hitachi Maxell, Ltd.
공칭 전압 Nominal	3 V
Voltage	
공칭 용량 Nominal	210mAh
Capacity	
UL Recognition	MH12568(N)
작동 온도 범위	-20 ~ +85°C

5. 보증 정보 Certification information

5.1. CE BioEntry 장치들은 R&TTE 지시문(Directive)하의 CE와 호환됩니다. 사용자는 이러한 지시문을 충족시키기 위해 제2.2절에서 언급된 올바 른 접지선과 페라이트 코어를 설치해야 합니다.

5.2. FCC

이 장비는 검사를 거쳤으며 FFC 규정의 Part 15의 규정대로 Class B 디지털 장비의 제한한도에 따르는 것으로 확인되었습니다. 이러한 제 한 사항들은 주거용 설치에서 위험한 혼선에 대비하여 합리적인 보호 를 위해 고안되었습니다. 이 장비는 고주파 에너지를 발생시, 사용하고 방출할 수도 있으며, 사용안내서에 따라 설치, 사용되지 않는다면 라디 오 통신에 해로운 혼선을 일으킬 수 있습니다. 그러나 특정 설치에서 혼선이 발생한다는 보장은 할 수 없습니다. 이 장비가 라디오나 텔레 비전 수신에 방해가 되는 혼선을 일으킨다면, 이러한 혼선은 장비를 켜고 끄는 것에 의해 확인할 수 있는데 사용자는 다음과 같은 방법들 을 이용해서 혼선을 바로잡을 것을 권고합니다.

- 수신 안테나를 새로운 방향으로 설치하거나 재배치합니다.
- 장비와 수신기 사이의 거리를 더 넓게 합니다.
- 회로에서 수신기가 연결된 콘센트와 다른 콘센트에 장비를 연결합니다.
- 판매자 또는 숙련된 라디오/TV 기술자에게 도움을 요청하십시오.

사용자는 규정을 충족하기 위해 제2.2절에서 언급한 대로 올바른 접지 선과 페라이트 코어를 설치해야 합니다.

Contact Information

㈜슈프리마
경기도 성남시 분당구 정자동 파크뷰 오피스타워 16층
우편번호 : 463-863
대표전화: 031-783-4502
팩스: 031-783-4503
홈페이지: <u>http://www.supremainc.com</u>
영업문의: <u>sales@supremainc.com</u>
기술문의: <u>support@supremainc.com</u>