

PROGRAMMING THE RADIO

IMPORTANT: BEFORE PROGRAMMING FOR THE FIRST TIME THE RADIO RECEIVER, DELETE ALL THE RECORDED TEST CODES.

SEE FUNCTION C AT THE BOTTOM OF THIS CHAPTER

DISPLAYING STORED CODES

- Press the **button A** repeatedly until the display shows r RPress button B until the display shows r The display will now cycle trough each stored code from 01 to 50.
- TO ERASE A SINGLE STORES CODE
- Press button D when the number of the code to be removed is displayed

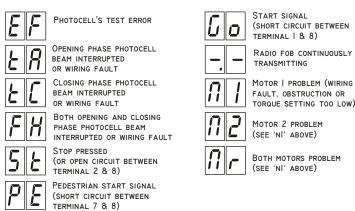
STORING NEW REMOTE CONTROL CODE

- Press the **button A** repeatedly until the display shows r R
 - Press button B until the display shows ζc
 - Press and hold the remote control button until a dot appears on the display (this means that the receiver is ready to store a new code) and simultaneously press button C to store the new code

STORING NEW REMOTE CONTROL CODE with STOP function

- Press the button A repeatedly until the display shows r R
- Press button B until the display shows [P
- Press and hold the remote control button until the dot appears on the display and simultaneously press button C to store the new code.

STORING NEW REMOTE CONTROL CODE with PEDESTRIAN function


- Pd Press the button A repeatedly until the display shows f
 Press button B until the display shows d

 - Press and hold the remote control button until the dot appears on the display and simultaneously press button C to store the new code

DELETING ALL STORED CODES

- Press the **button A** repeatedly until the display shows r R
- Press button B until the display shows r
- Press and hold **button D** until the display shows Γ = This indicates that all the codes have been erased

SELF-DIAGNOSIS DISPLAY MESSAGES

Method 1 = STANDARD Method 2 = SEQUENTIAL

Warning:

Before powering up and programming the control unit refer to the wiring scheme and then:

- 1 Check that the motor connections are correct
- 2 Check that the photocell connections are correct

Important:

If the photocells are not installed in closing phase, you must link terminals 3 and 9.

If the photocells are not installed in opening phase, you must link terminals 3 and 9.

- 3 Check that the control connections are correct. Important:
- If an emergency stop button is not fitted, you must link terminals 2 and 8.
- Use the motor release key supplied to disengage the electric motor from the mechanical drive; then close the gate and re-engage.
- 5 Power the control unit up

STANDARD PROGRAMMING PROCESS (Method 1)

- a) Give a START signal by either turning the key s:witch or by another control device (terminals 1 and 8)
- b) Wait until the gate has finished a complete (pre-programmed) OPEN/STOP/WAIT/CLOSE cycle.
- c) Give another START signal and not which parameter need adjusting
- d) Press button A on the control unit to select the Parameters menu.
- e) Press button B repeatedly until the display shows the parameter that you need to change
- f) Use buttons C and D to change or confirm each parameter as necessary **IMPORTANT**: press button B repeatedly until the display shows S_{\parallel} and then press button C to save the changes.

Example:

Increase the Motor 1 working time by 2 seconds

With the control board switched on, ensure t	hat the display shows:	
Press button A (steps thru the top menu)	until the display shows	→ P R
Press button B (steps thru the sub-menu)	until the display shows	→ î
Wait until the display shows the currents set	ing, for example	-> 21
Press button C twice	until the display shows	->23
Press button B repeatedly	until the display shows	→ 5 <i>U</i>
Press and hold button C until the relays click	and the display shows	

SEQUENTIAL PROGRAMMING (method 2)

SEQUENTIAL programming for gates with only one leaf

- Press button A (steps thru the top menu) until the display shows B5a)
- Press button B (steps thru the sub-menu) until the display shows Π Give a **START** signal: the leaf starts opening and the display shows Π b)
- c)
- Wait until the leaf has done the 90% of the opening cycle and then give another d) **START** signal: the display shows r and the deceleration phase begins
- e) Wait 4/5 seconds after the opening cycle has completely finished and give a START signal.
- The display shows L^{P} , the control unit has stored the opening and deceleration f) times and is now calculating the "stay open" time
- Give a START signals to stop calculating the "stay open" time and start the g) CLOSING CYCLE.
- g) When the closing cycle has completely finished, the control unit automatically exits from the sequential programming process and all the working times have been saved.

SEQUENTIAL programming for gates with two leaf

- a) Press button A (steps thru the top menu) until the display shows h_{2}
- b) Press button B (steps thru the sub-menu) until the display shows 2
- c) Give a START signal:
- The leaf 1 starts opening and the display shows \prod
- d) Wait until the leaf 1 has done the 90% of the opening cycle and then give another **START** signal: the display shows r and the deceleration phase of **leaf 1** begins
- e) Wait 4/5 seconds after the **leaf 1** has completely opened and give another **START** signal. The display shows $\int_{-\infty}^{\infty} dt$ and the **leaf 2** starts opening
- f) Wait until the leaf 2 has done the 90% of the opening cycle and then give another **START** signal: the display shows r_c^2 and the deceleration phase of **leaf 2** begins
- g) Wait 4/5 seconds after the leaf 2 has completely opened and give another START signal.
- The display shows L^{P} , the control unit has stored the opening and deceleration h) times of both leaves and is now calculating the "stay open" time
- i) Give a START signals to stop calculating the "stay open" time and start the closing cycle.
- When the closing cycle has completely finished, the control unit automatically I) exits from the sequential programming process and all the working times have been saved

SPECIAL FUNCTIONS

AUTOMATIC CLOSING FUNCTION

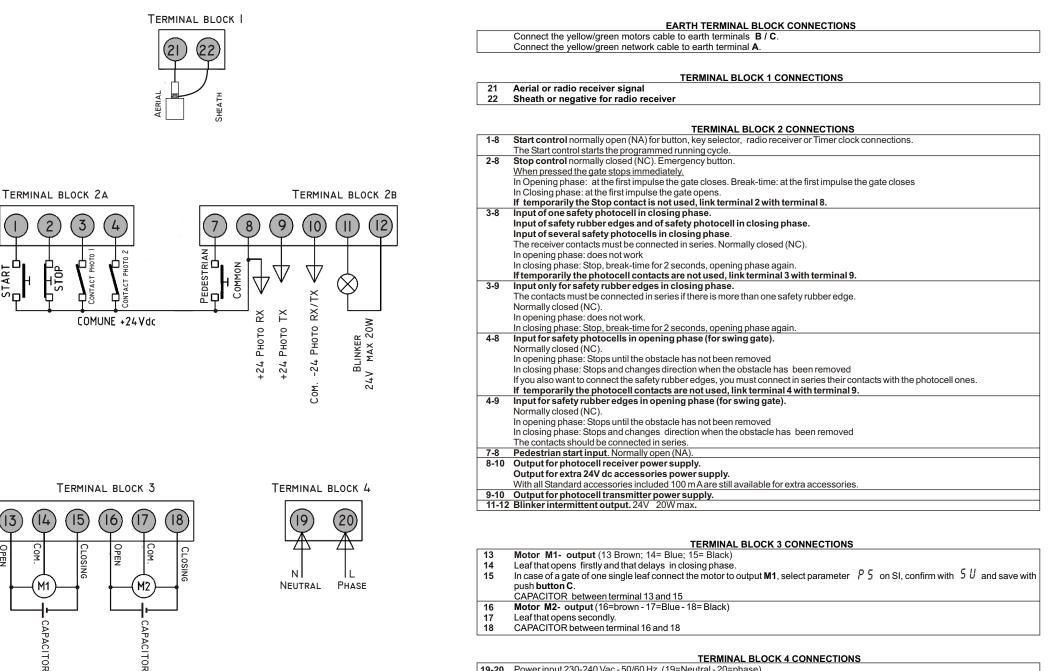
When set to YES ("SI"):

D

- an impulse during the opening phase will stop the motors until another impulse is received
- an impulse during the closing phase will stop and reverse the motors

When set to NO, the step-by-step operation is active:

- 1st impulse starts the **opening phase**
- 2nd impulse stops the opening phase
- 3rd impulse starts the closing phase



MULTI-USER FUNCTION when set to YES ("SI"): The control unit will not accept any command during the opening phase

PROGRAMMING THE Q36A PARAMETERS

TERMINAL BLOCK CONNECTIONS

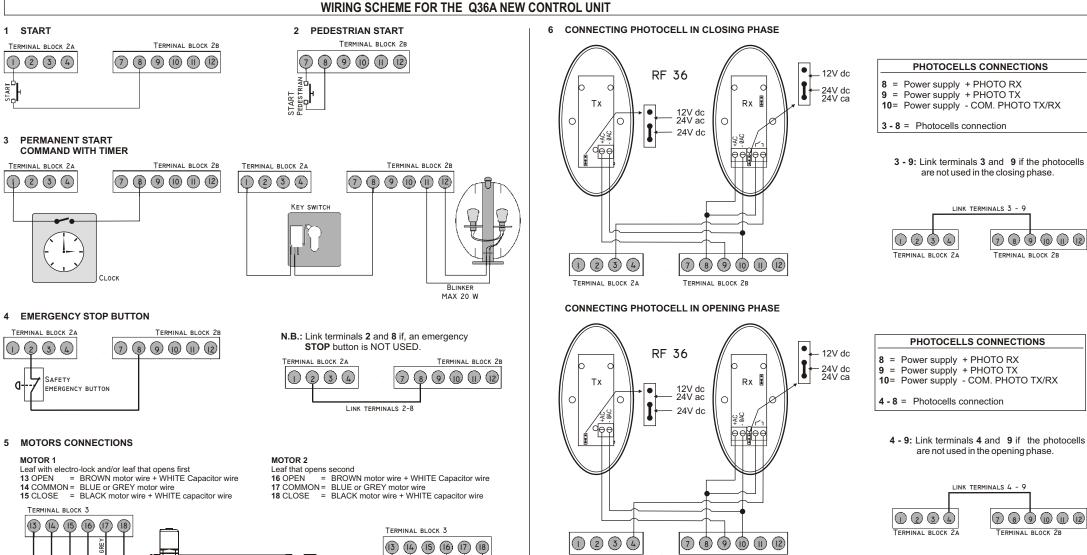
All the connections must be done without power supply.

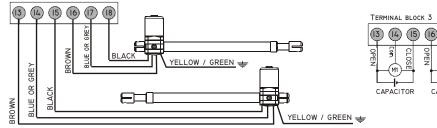
2

STOP

14

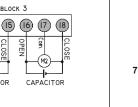
Com


M1

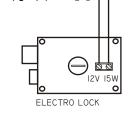

CAPACITOR

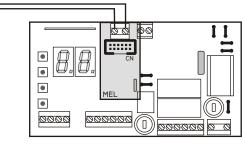
OPEN


TARI


19-20 Power input 230-240 Vac - 50/60 Hz. (19=Neutral - 20=phase)

CONNECTIONS IF ONLY ONE MOTOR


ELECTRO-LOCK INTERFACE BOARD(MEL)


IF YOU WANT TO CONNECT THE MEL INTO CN

TERMINAL BLOCK 2A

 CONNECT THE ELECTRO LOCK • CHANGE THE PARAMETERS PD - P | AND - [

TERMINAL BLOCK 2B

(12)