

TEST REPORT

Report Number..... ZKT-2207054571E

Date of issue...... Jul. 11, 2022

Test Result PASS

Testing Laboratory...... Shenzhen ZKT Technology Co., Ltd.

Applicant's name: SHENZHEN ITOONER TECHNOLOGY CO.,LTD

Building 2&Building 3(The 3rd and 4th Floor) GangZai

Shenzhen, Guangdong, China

Manufacturer's name: SHENZHEN ITOONER TECHNOLOGY CO.,LTD

Building 2&Building 3(The 3rd and 4th Floor) GangZai Address: Road, Shangxing Community, Xinqiao Street, Baoan District,

Shenzhen, Guangdong, China

Test specification:

EN 55032:2015+A11:2020, EN 55035:2017+A11:2020

EN IEC 61000-3-2:2019/A1:2021,

EN 61000-3-3:2013/A2:2021/AC:2022-01

Standard...... EN 61000-4-2:2009, EN IEC 61000-4-3:2020,

EN 61000-4-4:2012, EN 61000-4-5:2014+A1:2017,

EN 61000-4-6:2014, EN 61000-4-8:2010,

EN IEC 61000-4-11:2020

Test procedure....: /

Non-standard test method: N/A

Test Report Form No.....: TRF-EL-144 V0 Test Report Form(s) Originator: ZKT Testing

Master TRF Dated: 2020-01-06

This device described above has been tested by ZKT, and the test results show that the equipment under test (EUT) is in compliance with the 2014/30/EU Directive requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ZKT, this document may be altered or revised by ZKT, personal only, and shall be noted in the revision of the document.

Product name.....: Monitor

Trademark: N/A

Model/Type reference.....: GNT-L324KA

GNT-L222K0, GNT-L222KA, GNT-L324KA, GNT-L434KA, GNT-L504KA, GNT-L554KA, GNT-L654KA, GNT-LXXXKA

Ratings.....: Input: AC 90V~240V 50W

Shenzhen ZKT Technology Co., Ltd.

Testing procedure and testing location:		670
Testing Laboratory:	Shenzhen ZKT Techno	logy Co., Ltd.
Address:	1/F, No. 101, Building B, Industrial Avenue, Fuhai Shenzhen, China	No. 6, Tangwei Community Street, Bao'an District,
Tested by (name + signature)	.lim l iu	$\left(\frac{1}{2}\right)$
		<i>J-V-L</i> V-\
Reviewer (name + signature):	Alan Zheng	Alan Zheng
Approved (name + signature):	Lake Xie	APPROVED APPROVED

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

TABLE OF CONTENT

	Page
1. VERSION	5
2. GENERAL INFORMATION	
2.1 Description of Device (EUT)	
2.2 Tested System Details	
2.3 Test Facility	
2.4 MEASUREMENT UNCERTAINTY	
2.5 Test Instrument Used	
3. CONDUCTED EMISSIONS	9
3.1 Block Diagram Of Test Setup	
3.2 Limit	
3.3 Test procedure	
3.4 Test Result	
4. RADIATED EMISSIONS TEST	
4.1 Block Diagram Of Test Setup	12
4.2 Limits	
4.3 Test Procedure	
4.4 Test Results	
5. HARMONIC CURRENT EMISSION TEST	
5.1 Block Diagram of Test Setup	
5.2 Test Standard	
5.3 Operating Condition of EUT	
5.3.1 Setup the EUT as shown in Section 6.1.	
5.3.2 Turn on the power of all equipment.	
5.3.3 Let the EUT work in test mode and test it.	
5.4 Test Procedure	
5.5 Test Results	
VOLTAGE FLUCTUATIONS & FLICKER TEST	
6.1 Block Diagram of Test Setup	
6.2 Test Standard	
6.3 Operating Condition of EUT	
6.4 Test Procedure	
6.5 Test Results	
7. IMMUNITY TEST OF GENERAL THE PERFORMANCE CRITERIA	
8. ELECTROSTATIC DISCHARGE (ESD)	
8.1 Test Specification	
8.2 Block Diagram of Test Setup	
8.3 Test Procedure	
8.4 Test Results	
9. CONTINUOUS RF ELECTROMAGNETIC FIELD DISTURBANCES(RS)	
9.1 Test Specification	
9.2 Block Diagram of Test Setup	
9.3 Test Procedure	

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

9.4 Test Results	
10. ELECTRICAL FAST TRANSIENTS/BURST (EFT)	26
10.1 Test Specification	26
10.2 Block Diagram of EUT Test Setup	
10.3 Test Procedure	26
10.4 Test Results	
11. SURGES IMMUNITY TEST	27
11.1 Test Specification	
11.2 Block Diagram of EUT Test Setup	27
11.3 Test Procedure	27
11.4 Test Result	27
12. CONTINUOUS INDUCED RF DISTURBANCES (CS)	28
12.1 Test Specification	
12.2 Block Diagram of EUT Test Setup	
12.3 Test Procedure	28
12.4 Test Result	
13. MAGNETIC FIELD IMMUNITY TEST	29
13.1 Block Diagram of Test Setup	29
13.2 Test Standard	29
13.3 Severity Levels and Performance Criterion	
13.3.1 Severity level	29
13.3.2 Performance criterion: B	29
13.4 EUT Configuration on Test	30
13.5 Operating Condition of EUT	30
13.6 Test Procedure	30
13.7 Test Results	
14. VOLTAGE DIPS AND INTERRUPTIONS (DIPS)	
14.1 Test Specification	
14.2 Block Diagram of EUT Test Setup	
14.3 Test Procedure	
14.4 Test Result	31
15. EUT PHOTOGRAPHS	
16 FUT TEST PHOTOGRAPHS	错误!未完♡书祭.5

1. VERSION

Report No.	Version	Description	Approved
ZKT-2207054571E	Rev.01	Initial issue of report	Jul. 11, 2022
		(2)	

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

486-755-2233 6688

2. GENERAL INFORMATION

2.1 Description of Device (EUT)

EUT : Monitor

Trademark : N/A

GNT-L324KA

Model Number : GNT-L222K0, GNT-L222KA, GNT-L324KA, GNT-L434KA, GNT-L504KA,

GNT-L554KA, GNT-L654KA, GNT-LXXXKA

Model Difference Only for different model name

Power Supply : Input: AC 90V~240V 50W

☑ less than 108 MHz, the measurement shall only be made up to 1 GHz.
 ☑ between 108 MHz and 500 MHz, the measurement shall only be made up to 2

The highest frequency of the internal sources of

the EUT is (less

between 500 MHz and 1 GHz, the measurement shall only be made up to 5

GHz.

than 108)MHz:

above 1 GHz, the measurement shall be made up to 5 times the highest

frequency or 6 GHz, whichever is less.

Note: N/A

2.2 Tested System Details

None.

2.3 Test Facility

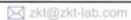
Site Description

Name of Firm : Shenzhen ZKT Technology Co., Ltd.

Site Location 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial

Avenue, Fuhai Street, Bao'an District, Shenzhen, China

2.4 MEASUREMENT UNCERTAINTY


Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)	
Conducted Emission (150K-30MHZ)	3.20	
Radiated disturbance30MHz-1000MHz	4.80	
Radiated disturbance1000MHz-6000MHz	5.10	

Shenzhen ZKT Technology Co., Ltd.

2.5 Test Instrument Used

Conducted emissions Test

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	Oct. 22, 2021	Oct. 21, 2022
2	LISN	CYBERTEK	EM5040A	E185040014 9	Oct. 22, 2021	Oct. 21, 2022
3	Test Cable	N/A	C01	N/A	Oct. 18, 2021	Oct. 17, 2022
4	Test Cable	N/A	C02	N/A	Oct. 18, 2021	Oct. 17, 2022
5	EMI Test Receiver	R&S	ESCI3	101393	Oct. 17, 2021	Oct. 16, 2022
6	Absorbing Clamp	DZ	ZN23201	15034	Oct. 17, 2021	Oct. 16, 2022
7	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	1	1

Radiated emissions Test (966 chamber)

Raula	ated emissions Test	(966 chamber)				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Bilog Antenna	Schwarzbeck	VULB9168	N/A	Oct. 17, 2021	Oct. 16, 2022
2	Loop Antenna	TESEQ	HLA6121	58357	Oct. 17, 2021	Oct. 16, 2022
3	Test Cable	N/A	R-01	N/A	Oct. 18, 2021	Oct. 17, 2022
4	Test Cable	N/A	R-02	N/A	Oct. 18, 2021	Oct. 17, 2022
5	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	Oct. 18, 2021	Oct. 17, 2022
6	Antenna Mast	EM	SC100_1	N/A	N/A	N/A
7	Turn Table	EM	SC100	N/A	N/A	N/A
8	Spectrum Analyzer	KEYSIGHT	9020A	MY5537083 5	Oct. 18, 2021	Oct. 17, 2022
9	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	060747	Oct. 18, 2021	Oct. 17, 2022
10	D.C. Power Supply	LongWei	TPR-6405D	N/A	1	1
11	EMC Software	Frad	EZ-EMC	Ver.EMC-C ON 3A1.1	1	\
12	Turntable	MF	MF-7802BS	N/A	\	\
13	Antenna tower	MF	MF-7802BS	N/A	1	1

Harmonic / Flicker Test

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Harmonic & Flicker	LAPLACE INSTRUMENTS	C2000A	311370	Oct. 17, 2021	Oct. 16, 2022
2	AC Power Source	LAPLACE INSTRUMENTS	C2000A	311370	Oct. 17, 2021	Oct. 16, 2022

Electrostatic discharge Test

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	ESD TEST GENERATOR	HTEC	HESD16	N/A	Oct. 22, 2021	Oct. 21, 2022

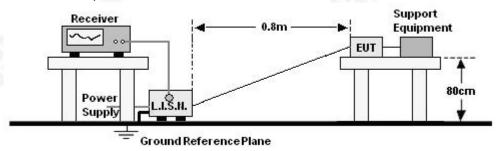
Shenzhen ZKT Technology Co., Ltd.

EFT and Surge and Voltage dips and interruptions Test

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Surge Generator	HTEC	HCOMPAC T5	202501	Oct. 22, 2021	Oct. 21, 2022
2	DIPS Generator	HTEC	HV1P16T	202101	Oct. 18, 2021	Oct. 17, 2022
3	EFT/B Generator	HTEC	HCOMPAC T5	202501	Oct. 22, 2021	Oct. 21, 2022
4	EFT/B Clamp	HTEC	H3C	N/A	Oct. 22, 2021	Oct. 21, 2022

For Magnetic Field Immunity Test

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Generator	HTEC	HFMG 100	202602	Oct. 18, 2021	Oct. 17, 2022



3. CONDUCTED EMISSIONS

3.1 Block Diagram Of Test Setup

For mains ports:

3.2 Limit

Limits for Conducted emissions at the mains ports of Class B MME

E	Limits				
Frequency range	dB(μV)				
(MHz)	Quasi-peak	Average			
0,15 to 0,50	66 to 56*	56 to 46*			
0,50 to 5	56	46			
5 to 30	60	50			

Notes: 1. *Decreasing linearly with logarithm of frequency.

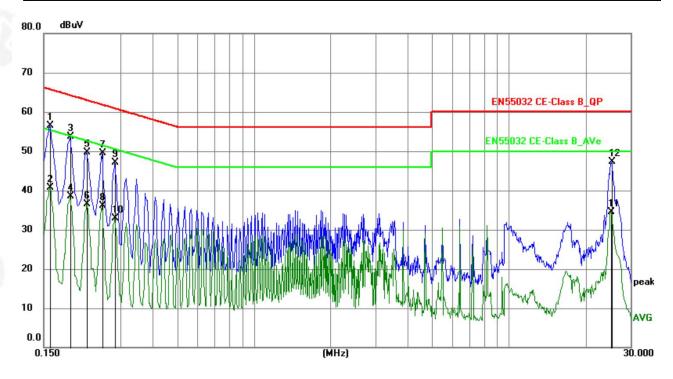
2. The lower limit shall apply at the transition frequencies.

3.3 Test procedure

For mains ports:

- a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- b. The RBW of the receiver was set at 9 kHz in 150 kHz \sim 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

Shenzhen ZKT Technology Co., Ltd.



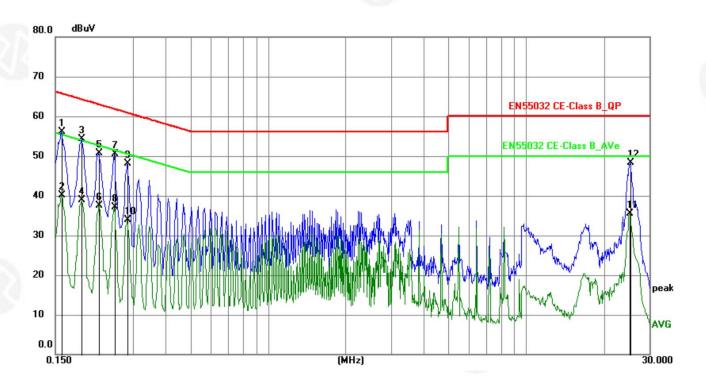
3.4 Test Result

Conducted emissions at the Mains Ports Test Data									
Temperature: 24.9 °C Relative Humidity: 42%									
Pressure:	1009hPa	Phase :	Line						
Test Voltage :	Test Voltage : AC 230V/50Hz Test Mode: Working								

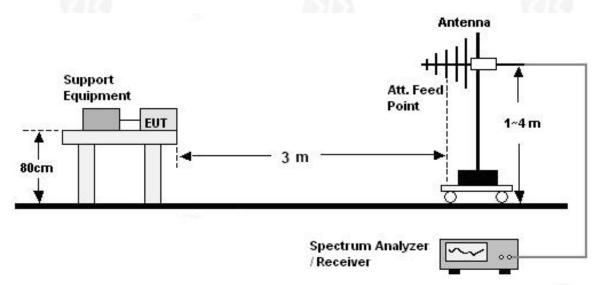
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1590	43.71	12.81	56.52	65.52	-9.00	QP	Р	
2	0.1590	27.83	12.81	40.64	55.52	-14.88	AVG	Р	
3	0.1905	41.62	12.13	53.75	64.01	-10.26	QP	Р	
4	0.1905	26.30	12.13	38.43	54.01	-15.58	AVG	Р	
5	0.2220	37.79	11.82	49.61	62.74	-13.13	QP	Р	
6	0.2220	24.60	11.82	36.42	52.74	-16.32	AVG	Р	
7	0.2535	37.79	11.67	49.46	61.64	-12.18	QP	Р	
8	0.2535	24.35	11.67	36.02	51.64	-15.62	AVG	Р	
9	0.2849	35.58	11.53	47.11	60.67	-13.56	QP	Р	
10	0.2849	21.39	11.53	32.92	50.67	-17.75	AVG	Р	
11	25.1834	24.66	9.91	34.57	50.00	-15.43	AVG	Р	
12	25.3365	37.48	9.91	47.39	60.00	-12.61	QP	Р	

Shenzhen ZKT Technology Co., Ltd.

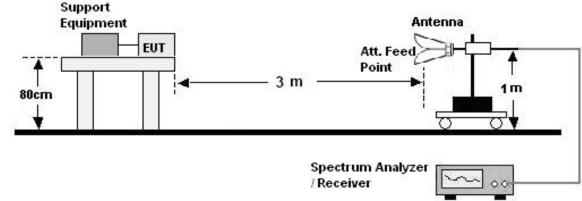
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China



Conducted emissions at the Mains Ports Test Data									
Temperature:	mperature: 24.9 °C Relative Humidity: 42%								
Pressure:	1009hPa	Phase :	Neutral						
Test Voltage : AC 230V/50Hz Test Mode: Working									



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1590	43.21	12.81	56.02	65.52	-9.50	QP	Р	
2	0.1590	27.33	12.81	40.14	55.52	-15.38	AVG	Р	
3	0.1892	42.07	12.16	54.23	64.07	-9.84	QP	Р	
4	0.1892	26.67	12.16	38.83	54.07	-15.24	AVG	Р	
5	0.2220	38.79	11.82	50.61	62.74	-12.13	QP	Р	
6	0.2220	25.60	11.82	37.42	52.74	-15.32	AVG	Р	
7	0.2535	38.79	11.67	50.46	61.64	-11.18	QP	Р	
8	0.2535	25.35	11.67	37.02	51.64	-14.62	AVG	Р	
9	0.2849	36.58	11.53	48.11	60.67	-12.56	QP	Р	
10	0.2849	22.39	11.53	33.92	50.67	-16.75	AVG	Р	
11	25.1834	25.66	9.91	35.57	50.00	-14.43	AVG	Р	
12	25.3365	38.48	9.91	48.39	60.00	-11.61	QP	Р	



4.1 Block Diagram Of Test Setup

(A) Radiated Emission Test Set-UP Frequency 30MHz-1GHz

(B) Radiated Emission Test Set-UP Frequency Over 1GHz

4.2 Limits

Limits for radiated disturbance of Class B MME

Frequency (MHz)	Quasi-peak limits at 3m dB(μV/m)
30-230	40
230-1000	47

FREQUENCY (MHz)	Class B (at 3m) dBuV/m				
FREQUENCT (MITZ)	Peak	Avg			
1000-3000	70	50			
3000-6000	74	54			

Shenzhen ZKT Technology Co., Ltd.

4.3 Test Procedure

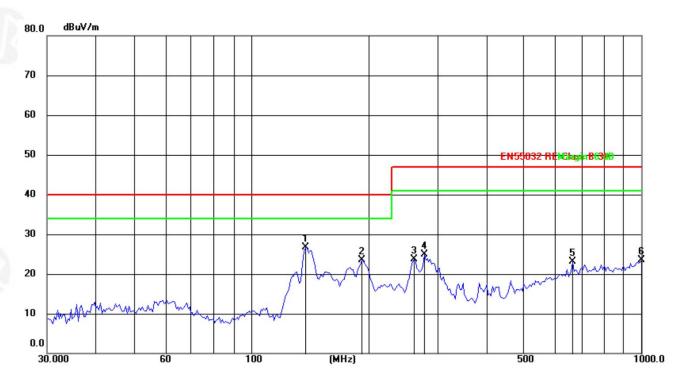
30MHz ~ 1GHz:

- a. The Product was placed on the nonconductive turntable 0.8 m above the ground in a semi anechoic chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Above 1GHz:

- a. The Product was placed on the non-conductive turntable 0.8 m above the ground in a full anechoic chamber..
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 1MHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its AV value: rotate the turntable from 0 to 360 degrees to find the degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to AV value and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Shenzhen ZKT Technology Co., Ltd.

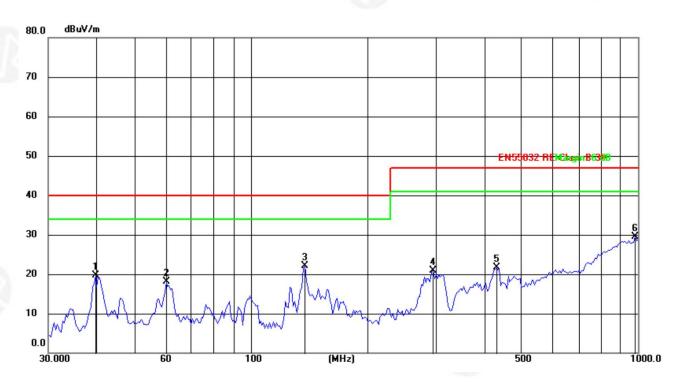


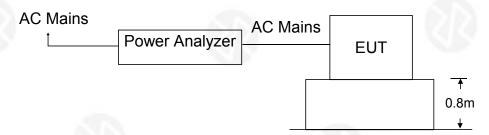
4.4 Test Results

Radiated Emissions Test Data									
Temperature:	23.8℃	Relative Humidity:	42%						
Pressure:	1009hPa	Phase :	Horizontal						
Test Voltage :	AC 230V/50Hz	Test Mode:	Working						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	137.9028	43.83	-17.10	26.73	40.00	-13.27	QP				
2	192.4185	41.89	-18.44	23.45	40.00	-16.55	QP				
3	261.5163	39.23	-15.47	23.76	47.00	-23.24	QP				
4	278.0668	39.41	-14.46	24.95	47.00	-22.05	QP				
5	668.1422	30.59	-7.39	23.20	47.00	-23.80	QP				
6	1000.0000	28.36	-4.87	23.49	47.00	-23.51	QP				

Shenzhen ZKT Technology Co., Ltd.




Radiated Emissions Test Data									
Temperature:	erature: 23.8 °C Relative Humidity: 42%								
Pressure:	1009hPa	Phase :	Vertical						
Test Voltage :	AC 230V/50Hz	Test Mode:	Working						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	39.7146	36.71	-16.91	19.80	40.00	-20.20	QP				
2	60.4918	36.44	-18.36	18.08	40.00	-21.92	QP				
3	137.9028	43.07	-20.97	22.10	40.00	-17.90	QP				
4	295.6648	39.42	-18.47	20.95	47.00	-26.05	QP				
5	431.0315	35.75	-13.96	21.79	47.00	-25.21	QP	·			
6	982.6200	29.77	-0.31	29.46	47.00	-17.54	QP				

5.1 Block Diagram of Test Setup

5.2 Test Standard

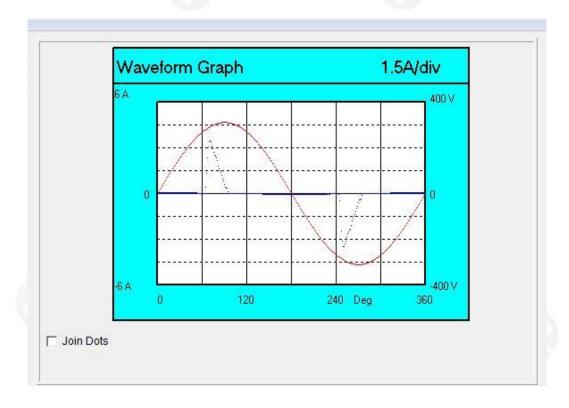
EN IEC 61000-3-2:2019/A1:2021

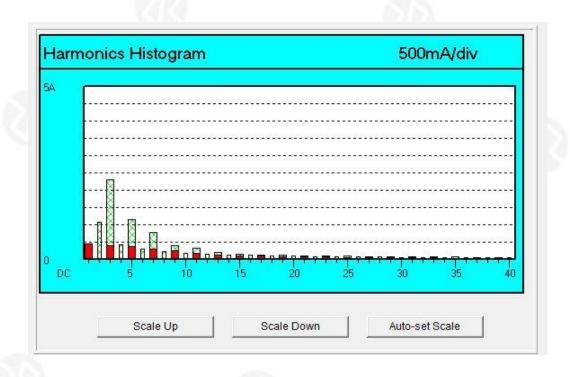
5.3 Operating Condition of EUT

- 5.3.1 Setup the EUT as shown in Section 6.1.
- 5.3.2 Turn on the power of all equipment.
- 5.3.3 Let the EUT work in test mode and test it.

5.4 Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.


5.5 Test Results


PASS

Please refer to the following page.

Shenzhen ZKT Technology Co., Ltd.

Shenzhen ZKT Technology Co., Ltd.
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

N	Filtered	Limit	Avg.	%Limit	Max.	%Limit		N	Filtered	Limit	Avg.	%Limit	Max.	%Limit
1	446.7	ş		_ 2	_ 0	123		2	2.3	1080.0	2.5	0.2	2.8	0.3
3	411.8	2300.0	411.3	17.9	411.8	17.9	1	4	2.3	430.0	2.4	0.6	2.6	0.6
5	366.4	1140.0	366.0	32.1	366.6	32.2	1	6	2.3	300.0	2.5	0.8	2.6	0.9
7	306.9	770.0	306.5	39.8	307.3	39.9	1	8	2.1	230.0	2.6	1.1	2.8	1.2
9	241.3	400.0	241.0	60.3	241.8	60.5	1	10	2.3	184.0	2.6	1.4	3.0	1.6
11	179.6	330.0	179.3	54.3	180.1	54.6	1	12	2.5	153.3	2.7	1.8	3.0	2.0
13	130.7	210.0	130.4	62.1	131.0	62.4	1	14	2.5	131.4	2.8	2.1	3.2	2.4
15	101.6	150.0	101.2	67.5	101.7	67.8	1	16	2.5	115.0	2.8	2.4	3.2	2.8
17	89.7	132.3	89.4	67.6	90.0	68.0	1	18	2.5	102.2	2.8	2.7	3.2	3.1
19	84.3	118.4	84.0	70.9	84.5	71.4	1	20	2.5	92.0	2.7	2.9	3.2	3.5
21	76.9	107.1	76.7	71.6	77.3	72.2	1	22	2.6	83.6	2.7	3.2	3.0	3.6
23	66.8	97.8	66.7	68.2	67.0	68.5	1	24	2.5	76.7	2.6	3.4	3.0	3.9
25	56.6	90.0	56.4	62.7	56.8	63.1	1	26	2.5	70.8	2.5	3.5	2.8	4.0
27	49.2	83.3	49.0	58.8	49.4	59.3	1	28	2.5	65.7	2.5	3.8	2.8	4.3
29	45.3	77.6	45.0	58.0	45.4	58.5	1	30	2.3	61.3	2.4	3.9	2.6	4.2
31	42.6	72.6	42.4	58.4	42.7	58.8	1	32	1.9	57.5	2.1	3.7	2.5	4.3
33	39.0	68.2	38.7	56.7	39.0	57.2	1	34	1.7	54.1	2.0	3.7	2.3	4.3
35	34.1	64.3	33.9	52.7	34.1	53.0	1	36	1.6	51.1	1.8	3.5	2.1	4.1
37	29.3	60.8	29.1	47.9	29.3	48.2	1	38	1.4	48.4	1.6	3.3	1.9	3.9
39	25.7	57.7	25.5	44.2	25.7	44.5	1	40	1.4	46.0	1.6	3.5	1.7	3.7
Р	155.3	251.4	154.5	61.5	155.5	61.9	1					4		828

VOLTAGE FLUCTUATIONS & FLICKER TEST

6.1 Block Diagram of Test Setup

Same as Section 6.1.

6.2 Test Standard

EN 61000-3-3:2013/A2:2021/AC:2022-01

6.3 Operating Condition of EUT

Same as Section 5.3.. The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

Flicker Test Limit

Test items	Limits
Pst	1.0
dc	3.3%
dmax	4.0%
dt	Not exceed 3.3% for 500ms

6.4 Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

6.5 Test Results

PASS

Please refer to the following page.

Shenzhen ZKT Technology Co., Ltd.

	Flicker Test Data						
Temperature: 24.5 ℃ Relative Humidity: 54%							
Pressure:	1009hPa	Test Mode:	ON				
Test Voltage :	AC 230V/50Hz		(4.6)				

Voltage Fluctuation	Limit	Value
Relative Voltage Change Characteristic Tmax (dc>3%)	500 ms	0 ms
	4%	0.00
Maximum Relative Voltage Change d _{max}	6%	1
	7%	1
Relative Steady-state Voltage Change dc	3.3%	0.00

Flicker	Limit	Value
Short-term Flicker Indicator P _{st}	1.0	0.064
Long-term Flicker Indicator Plt	0.65	/

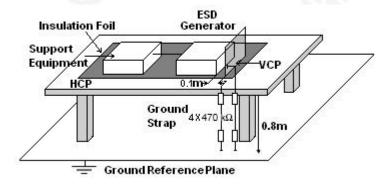
7. IMMUNITY TEST OF GENERAL THE PERFORMANCE CRITERIA

Product Standard	EN 55035:2017+A11:2020 clause 5
CRITERION A	The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
	During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.
CRITERION B	After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.
	If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
CRITERION C	Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.
	Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Shenzhen ZKT Technology Co., Ltd.
1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

8. ELECTROSTATIC DISCHARGE (ESD)

8.1 Test Specification


Test Port : Enclosure port

Discharge Impedance : 330 ohm / 150 pF

Discharge Mode : Single Discharge

Discharge Period : one second between each discharge

8.2 Block Diagram of Test Setup

8.3 Test Procedure

- a. Electrostatic discharges were applied only to those points and surfaces of the Product that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the Product.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the Product as fast as possible (without causing mechanical damage) to touch the Product. After each discharge, the ESD generator was removed from the Product and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the Product were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the Product.

Shenzhen ZKT Technology Co., Ltd.

8.4 Test Results

Discharge Method	Discharge Position	Voltage (±kV)	Min. No. of Discharge per polarity (Each Point)	Required Level	Performance Criterion	
	Conductive Surfaces	4	10	В	А	
Contact Discharge	Indirect Discharge HCP	4	10	В	А	
	Indirect Discharge VCP	4	10	В	А	
Air Discharge	Slots, Apertures, and Insulating Surfaces	8	10	В	А	
MAN.						

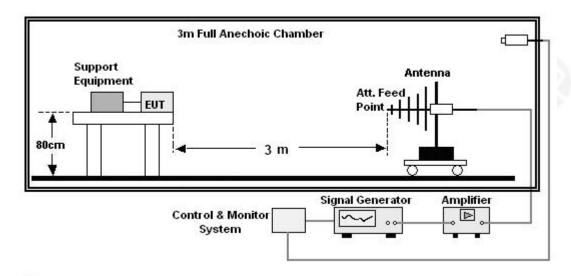
Note: N/A

9. CONTINUOUS RF ELECTROMAGNETIC FIELD DISTURBANCES(RS)

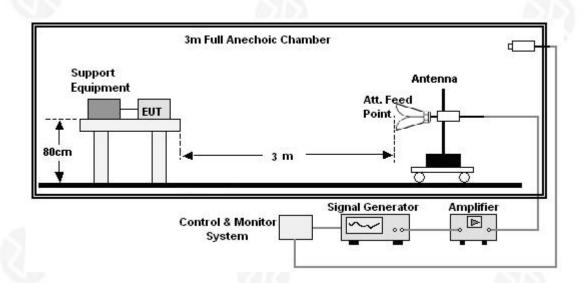
9.1 Test Specification

Test Port : Enclosure port

Step Size : 1%


Modulation : 1kHz, 80% AM

Dwell Time : 1 second


Polarization : Horizontal & Vertical

9.2 Block Diagram of Test Setup

Below 1GHz:

Above 1GHz:

Shenzhen ZKT Technology Co., Ltd.

9.3 Test Procedure

- a. The testing was performed in a fully-anechoic chamber. The transmit antenna was located at a distance of 3 meters from the Product.
- b. The frequency range is swept from 80MHz to 1000MHz, 1800MHz, 2600MHz, 3500MHz, 5000MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave, and the step size was 1%.
- c. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond, but should not exceed 5 s at each of the frequencies during the
- d. The test was performed with the Product exposed to both vertically and horizontally polarized fields on each of the four sides.
- e. For Broadcast reception function: Group 2 not apply in this test.

9.4 Test Results

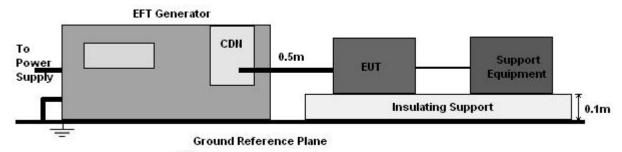
Frequency	Position	Field Strength (V/m)	Required Level	Performance Criterion
80 - 1000MHz, 1800MHz, 2600MHz, 3500MHz, 5000MHz	Front, Right, Back, Left	3	А	А

Note: The EUT is the testing item(s) was (were) fulfilled by subcontracted lab SHENZHEN HAIYUN TESTING CO.,LTD

Shenzhen ZKT Technology Co., Ltd.

10. ELECTRICAL FAST TRANSIENTS/BURST (EFT)

10.1 Test Specification


Test Port : input a.c. power port

Impulse Frequency: 5 kHzImpulse Wave-shape: 5/50 nsBurst Duration: 15 msBurst Period: 300 ms

Test Duration : 2 minutes per polarity

10.2 Block Diagram of EUT Test Setup

For input a.c. power port:

10.3 Test Procedure

- a. The Product and support units were located on a non-conductive table above ground reference plane.
- b. A 0.5m-long power cord was attached to Product during the test.

10.4 Test Results

Coupling	Voltage (kV)	Polarity	Required Level	Performance Criterion
AC Mains L-N	1.0	±	В	Α
AC Mains L	1.0	±	В	А
AC Mains N	1.0	±	В	А
Note: N/A	- 24			

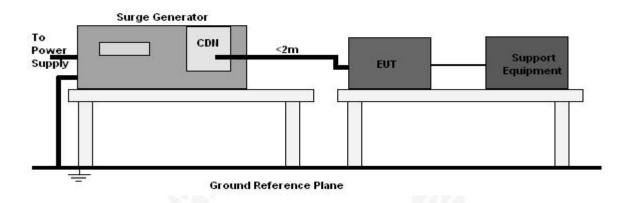
Shenzhen ZKT Technology Co., Ltd.

11. SURGES IMMUNITY TEST

11.1 Test Specification

Test Port : input a.c. power port

Wave-Shape : Open Circuit Voltage - 1.2 / 50 us


Short Circuit Current - 8 / 20 us

Pulse Repetition Rate : 1 pulse / min.

Phase Angle : 0° / 90° / 180° / 270°

Test Events : 5 pulses (positive & negative) for each polarity

11.2 Block Diagram of EUT Test Setup

11.3 Test Procedure

- a. The surge is to be applied to the Product power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave.
- b. The power cord between the Product and the coupling/decoupling networks shall be 2 meters in length (or shorter). Interconnection line between the Product and the coupling/decoupling networks shall be 2 meters in length (or shorter).

11.4 Test Result

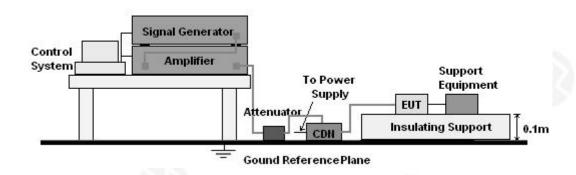
Coupling Line	Voltage (kV)	Phase Angle	Required Level	Performance Criterion
SIN N	+1	90°	В	Α
L - N	-1	270°	В	А
Note: N/A				A.

Shenzhen ZKT Technology Co., Ltd.

12. CONTINUOUS INDUCED RF DISTURBANCES (CS)

12.1 Test Specification

Test Port : input a.c. power port


Step Size : 1%

Modulation : 1kHz, 80% AM

Dwell Time : 1 second

12.2 Block Diagram of EUT Test Setup

For input a.c. power port:

12.3 Test Procedure

For input a.c. power port:

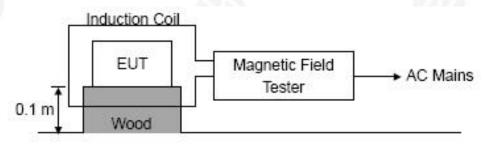
- a. The Product and support units were located at a ground reference plane with the interposition of a 0.1 m thickness insulating support and the CDN was located on GRP directly.
- b. The frequency range is swept from 150 kHz to 10MHz, 10MHz to 30MHz, 30MHz to 80MHz with the signal 80% amplitude modulated with a 1 kHz sine wave, and the step size was 1% of fundamental.
- c. The dwell time at each frequency shall be not less than the time necessary for the Product to be able to respond.

12.4 Test Result

Frequency (MHz)	Voltage Level (V r.m.s.)	Required Level	Performance Criterion
0.15 - 10	3	Α	Α
10 to 30	3 to 1	Α	Α
30 to 80	1	Α	Α
	(MHz) 0.15 - 10 10 to 30	(MHz) (V r.m.s.) 0.15 - 10 3 10 to 30 3 to 1	(MHz) (V r.m.s.) Required Level 0.15 - 10 3 A 10 to 30 3 to 1 A

Note:The EUT is the testing item(s) was (were) fulfilled by subcontracted lab SHENZHEN HAIYUN TESTING CO.,LTD

Shenzhen ZKT Technology Co., Ltd.



13. MAGNETIC FIELD IMMUNITY TEST

13.1 Block Diagram of Test Setup

Ground Reference Support

13.2 Test Standard

EN 55035:2017+A11:2020, EN61000-4-8:2010 Severity Level 1 at 1A/m

13.3 Severity Levels and Performance Criterion

13.3.1 Severity level

Level	Magnetic Field Strength A/m
1.	1
2.	3
3.	10
4.	30
5.	100
X.	Special

13.3.2 Performance criterion: B

- A. The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
- B. After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaces by a permissible loss of performance.

 During the test, degradation of performance is allowed. However, no change of

Shenzhen ZKT Technology Co., Ltd.

operating state or stored data is allowed to persist after the test. If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably except from the equipment if used as intended.

C. Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

13.4 EUT Configuration on Test

The configuration of EUT is listed in Section 2.9.

13.5 Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.9 except the test set up replaced as Section 12.1.

13.6 Test Procedure

The EUT shall be subjected to the test magnetic field by using the induction coil of standard dimensions (1m*1m) and shown in Section 10.1. The induction coil shall then be rotated by 90° in order to expose the EUT to the test field with different orientations.

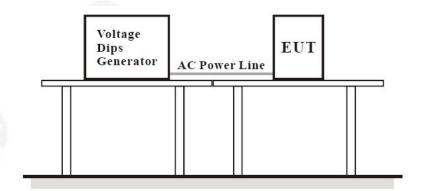
13.7 Test Results

PASS

Please refer to the following page.

		MS Test I	Data			
Temperature:	24.5℃	24.5℃			53%	
Power Supply:	AC230V/50	AC230V/50Hz Test Mo		: On		
Environmental Phenomena	Test specification	Units	Coil Orientation	Performance Criterion	Resul	
			X	А	PASS	
Magnetic Field	1	A/m	Υ	А	PASS	
			Z	А	PASS	

Shenzhen ZKT Technology Co., Ltd.


14. VOLTAGE DIPS AND INTERRUPTIONS (DIPS)

14.1 Test Specification

Test Port : input a.c. power port

Phase Angle : 0°, 180° Test cycle : 3 times

14.2 Block Diagram of EUT Test Setup

14.3 Test Procedure

- a. The Product and support units were located on a non-conductive table above ground floor.
- b. Set the parameter of tests and then perform the test software of test simulator.
- c. Conditions changes to occur at 0 degree crossover point of the voltage waveform.

14.4 Test Result

Test Level % <i>U</i> _T	Voltage dips in % <i>U</i> _T	Duration (ms)	Required Level	Performance Criterion
< 5	≥95	10	В	Α
70	30	500	С	Α
Voltage Interruptions:				
< 5	≥95	5000	С	C*
Note: N/A	2		400	

Shenzhen ZKT Technology Co., Ltd.

15. EUT PHOTOGRAPHS

EUT Photo 1

EUT Photo 2

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

EUT Photo 3

EUT Photo 4

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

EUT Photo 5

RE

CE

**** END OF REPORT ****

Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

