624

- चanara

INDEX

1...WARNINGS 3
2...TECHNICAL SPECIFICATIONS 3
3...LAYOUT AND COMPONENTS OF 624BLD 3
3.1 Description of components 3
4...ELECTRICAL CONNECTIONS 4
4.1 J1 Terminal-board - Accessories (Fig. 2) 4
4.2 Connection of relay photocells and safety devices with "N.C." contact 5
4.3 Connection of BUS photocells 5
4.4 J2 Terminal-board - Motor, flashing lamp and fan (Fig. 2) 6
4.5 J8 Connector - Motor capacitor (Fig. 2) 6
4.6 J9 Terminal-board - Power supply (Fig. 2) 6
4.7 J3, J5 Rapid connectors - for opening and closing limit-switches (Fig. 2) 6
4.8 J6 Connector - Beam breaking sensor (Fig. 2) 6
4.9 DS1 Frequency selector (Fig. 1) 6
4.10 J4 Connector - for Minidec, Decoder and RP 6
5...PROGRAMMING 6
5.1 1st LEVEL PROGRAMMING 6
5.2 Modification of the pre-setting 8
5.3 Setup and BUS system control 8
5.4 2nd LEVEL PROGRAMMING 9
5.5 Setup for integrated Loop Detector 10
6...START-UP. 11
6.1 Board LEDS check 11
6.2 Check on BUS status 11
7...AUTOMATED SYSTEM TEST 11
8...MASTER-SLAVE CONFIGURATIONS 12
9...3rd LEVEL PROGRAMMING 13
9.1 Customisation of function logic 15
10.PRE-SETTING VALUES 15
11.NOTES 16
12.INTERLOCK CONNECTION 16
13.FUNCTION LOGIC TABLES 17

CE DECLARATION OF CONFORMITY

Manufacturer: FAAC S.p.A.

Address: Via Calari, 10-40069 Zola Predosa BOLOGNA - ITALY
Declares that: $\quad 624$ BLD control unit
conforms to the essential safety requirements of the following EEC direcfives:

2006/95/EC Low Voltage Directive
2004/108/EC Electromagnetic Compatibility Dierective

Additional note:

This product underwent tests in a typical uniform configuration (all products manufactured by FAAC S.p.A.).

Bologna, 01-01-2014

CEO
A. Marcella

WARNINGS FOR THE INSTALLER GENERAL SAFETY OBLIGATIONS

1) ATTENTION! To ensure the safety of people, it is important that you read all the following instructions. Incorrect installation or incorrect use of the product could cause serious harm to people.
2) Carefully read the instructions before beginning to install the product.
3) Do not leave packing materials (plastic, polystyrene, etc.) within reach of children as such materials are potential sources of danger.
4) Store these instructions for future reference.
5) This product was designed and built strictly for the use indicated in this documentation. Any other use, not expressly indicated here, could compromise the good condition/operation of the product and/or be a source of danger.
6) FAAC declines all liability caused by improper use or use other than that for which the automated system was intended.
7) Do not install the equipment in an explosive atmosphere: the presence of inflammable gas or fumes is a serious danger to safety.
8) The mechanical parts must conform to the provisions of Standards EN 12604 and EN 12605.
For non-EU countries, to obtain an adequate level of safety, the Standards mentioned above must be observed, in addition to national legal regulations.
9) FAAC is not responsible for failure to observe Good Technique in the construction of the closing elements to be motorised, or for any deformation that may occur during use.
10) The installation must conform to Standards EN 12453 and EN 12445. For non-EU countries, to obtain an adequate level of safety, the Standards mentioned above must be observed, in addition to national legal regulations.
11) Before attempting any job on the system, cut out electrical power.
12) The mains power supply of the automated system must be fitted with an all-pole switch with contact opening distance of 3 mm or greater. Use of a 6A thermal breaker with all-pole circuit break is recommended.
13) Make sure that a differential switch with threshold of 0.03 A is fitted upstream of the system.
14) Make sure that the earthing system is perfectly constructed and conneat metal parts of the closure to it.
15) The automated system is supplied with an intrinsic anti-crushing safety device consisting of a torque control. Nevertheless, its tripping threshold must be checked as specified in the Standards indicated at point 10.
16) The safety devices (EN 12978 standard) protect any danger areas against mechanical movement Risks, such as crushing, dragging, and shearing.
17) Use of at least one indicator-light (e.g. FAACLIGHT) is recommended for every system, as well as a warning sign adequately secured to the frame structure, in addition to the devices mentioned at point " 16 ".
18) FAAC declines all liability as concerns safety and efficient operation of the automated system, if system components not produced by FAAC are used.
19) For maintenance, strictly use original parts by FAAC.
20) Do not in any way modify the components of the automated systerm.
21) The installer shall supply all information concerning manual operation of the system in case of an emergency and shall hand over to the user the warnings handbook supplied with the product.
22) Do not allow children or adults to stay near the product while it is operating.
23) Keep remote controls or other pulse generators away from children, to prevent the automated system from being activated involuntarily.
24) Transit is permitted only when the automated system is idle.
25) The user must not attempt any kind of repair or direct action whatever and contact qualified personnel only.
26) Check at least every 6 months the efficiency of the system, particularly the efficiency of the safety devices (including, where foreseen, the operator thrust force) and of the release devices.
27) Anything not expressly specified in these instructions is not permitted.

CONTROL UNIT 624 BLD

1. WARNINGS

Attention: Before attempting any work on the control unit (connections, maintenance), always turn off power.

- Install, upstream of the system, a differential thermal breaker with adequate tripping threshold.
- Connect the earth cable to the terminal on the J9 connector of the unit (see fig.2).
- Always separate power cables from control and safety cables (push-button, receiver, photocells, etc.). To avoid any electrical noise, use separate sheaths or a screened cable (with the screen earthed).

2. TECHNICAL SPECIFICATIONS

Power supply voltage *	$\begin{gathered} 230 \mathrm{~V} \sim(+6 \%-10 \%)-50 / 60 \mathrm{~Hz} \\ \text { or } \\ 115 \mathrm{~V} \sim(+6 \%-10 \%)-50 / 60 \mathrm{~Hz} \end{gathered}$
Absorbed power	7 W
Motor max. load	1000 W
Power supply for accessories	24 Vdc
Accessories max. current	500 mA
Operating ambient temperature	from $-20^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Protection fuses *	$\begin{gathered} F 1=F 10 A-250 V F 2=T 0,8 A-250 V \\ \text { Or } \\ F 1=F 20 A-120 V F 2=T 0,8 A-120 V \end{gathered}$
Work time	Programmable (from 0 to 4 minutes)
Pause time	Programmable (from 0 to 4 minutes)
Motor power	Programmable on 50 levels
Programming	3 programming levels for greater flexibility of use
Rapid connector	Coupling for 5-pin Minidec board, Decoder, Receiver RP/RP2
Programmable outputs	4 programmable outputs in 18 different functions
Features	Management of slow-downs, multifunction display, BUS technology and INTEGRATED METALLIC MASS DETECTOR

* The power supply voltage and fuses depend on the version purchased:

	$\mathbf{2 3 0} \mathbf{V} \sim$	$\mathbf{1 1 5} \mathbf{V} \sim$
BARRIER	F1 $=$ F 5A	F1 = F 10A
	F2 $=$ T 0,8A	F2 $=$ T 0,8A
BOLLARD	$\mathrm{F} 1=\mathrm{F} 10 \mathrm{~A}$	
	$\mathrm{~F} 2=\mathrm{T} 0,8 \mathrm{~A}$	$/$

3. LAYOUT AND COMPONENTS OF 624BLD

Fig. 1

3.1 DESCRIPTION OF COMPONENTS

DL	SIGNALS AND PROGRAMMING DISPLAY
LED	INPUT STATUS CONTROL LEDs
J 1	LOW-VOLTAGE TERMINAL BOARD
J2	TERMINAL BOARD FOR CONNECTION OF MOTOR, FLASHING LAMP AND FAN
J3	OPENING LIMIT-SWITCH CONNECTOR
J4	CONNECTOR FOR DECODER MINIDEC / RP RECEIVER
J5	CLOSING LIMIT-SWITCH CONNECTOR
J6	CONNECTOR FOR ROD BREAKING SENSOR
J8	CONNECTOR FOR MOTOR THRUST CAPACITOR
J9	TERMINAL-BOARD FOR 230 VAC POWER SUPPLY
DS 1	LOOP 1 and LOOP 2 FREQUENCIES SELECTOR
F1	FUSE FOR MOTORS AND TRANSFORMER PRIMARY WINDING (F 5A)
F2	FUSE FOR LOW VOLTAGE AND ACCESSORIES (T 800mA)
F	PROGRAMMING PUSH-BUTTON "F"
+	PROGRAMMING PUSH-BUTTON "+"
-	PROGRAMMING PUSH-BUTTON "-"
TF 1	TRANSFORMER

4. ELECTRICAL CONNECTIONS

4.1. J1 TERMINAL-BOARD - ACCESSORIES (FIG. 2)

LOOP 1 - Magnetic loop LOOP 1 (OPEN - terminals 1-2): it activates the OPENING function
LOOP 2 - Magnetic loop LOOP 2 (SAFETY/CLOSE - terminals 3-4): it activates the SAFETY/CLOSING function
OPEN - "Opening" Command (N.O. - terminal 5): this refers to any pulse generator (e.g.: push-button) which, by closing a contact, commands the barrier to close and/or open.
CLOSE - "Closing" Command (N.O. - terminal 6): this refers to any pulse generator (e.g.: push-button) which, by closing a contact, commands the barrier to close.

FSW - Closing safety-devices contact (N.C. - terminal 7). The purpose of the closing safety devices is to protect the barrier movement area during closure, by reversing motion. They are never tripped during the opening cycle. If the closing Safety devices are engaged when the automated system is in open status, they prevent the closing movement.

If closing safety devices are not connected, jumper connect the FSW and GND terminals (fig. 6).
STOP - STOP contact (N.C. - terminal 8): this refers to any device (e.g.: push-button) which, by opening a contact, can stop the motion of the automated system.

\. If stop safety devices are not connected, jumper connect the STOP and GND terminals (fig. 6).

EMERGENCY - EMERGENCY contact (N.C- terminal 9): this refers to any switch which, by being activated in emergency state, opens the barrier and stops its movement until the contact is restored.
\. If emergency safety devices are not connected, jumper connect the EMERGENCY and GND terminals (fig. 6).
GND (terminals 10-11-19) - Negative contact for feeding accessories
$\underline{24 \text { Vdc (terminals 12-13)- Positive contact for feeding accessories }}$
Max. load of accessories: 500 mA . To calculate absorption values, refer to the instructions for individual accessories

OUT 1 - Output 1 GND open-collector (terminal 14): The output can be set in one of the functions described in the 2nd programming level (see par. 5.2.). Default value is FAILSAFE. Maximum load: $\mathbf{2 4}$ Vdc with 100 mA .
OUT 2 - Output 2 GND open-collector (terminal 15): The output can be set in one of the functions described in the 2nd programming level(see par. 5.2.). Default value is CLOSED beam. Maximum load: $\mathbf{2 4}$ Vac with 100 mA.
OUT 3 - RELAY Output 3 (terminal 16-17): The output can be set in one of the functions described in the 2nd programming level (see par. 5.2.). Default value is INDICATOR LIGHT: Maximum load: $\mathbf{2 4}$ Vdc or Vac with $\mathbf{5 0 0} \mathbf{~ m A}$.

A To avoid endangering correct operation of the system, do not exceed the indicated power indicated in fig. 2.
OUT 4 - Output 4 open-collector +24 Vdc (terminal 18): The output can be set in one of the functions described in the 2nd programming level (see par. 5.2.). The default value for ALL THE PRE-SETTINGS is BUS COMMUNICATION. Maximum load: 24 Vdc with 100 mA .

4.2.CONNECTION OF RELAY PHOTOCELLS AND SAFETY DEVICES WITH "N.C." CONTACT

The 624 BLD board envisages the connection of closing safety devices which are tripped only during the barrier closing movement, and are therefore suitable for protecting the closing zone against the risk of impact.

If two or more safety devices (NC contacts) have to be connected, put them in series with each other as shown in figures 3, 4, 5 under the heading "SAFE".

4.3.CONNECTION OF BUS PHOTOCELLS

Photocells using BUS technology are connected to the 624 BLD control unit ALL IN PARALLEL as shown in Fig. 7 through single power/communication line.

The BUS photocells do not have connection polarity.

Up to a maximum of 8 pairs of BUS photocells can be connected to the board.
The photocells are subdivided by quantity into the following groups:
Pairs of closure photocells:
Pairs of photocells for OPEN pulse: max 1

After positioning of the BUS technology photocells, select the address of each pair through the combination of the DIP-SWITCHES present on each photocell.

Set THE SAME DIP-SWITCH ADDRESS chosen on both the transmitter and the receiver of the same pair.
Make sure that there are not two or more pairs of photocells with the same address

훙
If no BUS accessory is used, leave terminals 18 and 19 free.

Table 4 shows the programming of the dip-switches present within the transmitter and receiver of the BUS photocells.

DIP-SWITCH TX			$\xrightarrow[\text { ADDRESS }]{\text { SAME }} \rightarrow$		DIP-SWITCH RX
Dip 1	Dip2	Dip3	Dip4	Pair number	Type
ON	OFF	OFF	OFF	1 st pair	
ON	OFF	OFF	ON	2nd pair	
ON	OFF	ON	OFF	3rd pair	
ON	OFF	ON	ON	4th pair	CLOSURE
ON	ON	OFF	OFF	5th pair	
ON	ON	OFF	ON	6th pair	
ON	ON	ON	OFF	7th pair	
ON	ON	ON	ON	Single Pair	OPEN PULSE

To make the installed Bus accessories operational, perform on-board memorisation as explained in chapter 5.3.

4.4. J2 TERMINAL-BOARD - MOTOR, FLASHING LAMP AND FAN (FIG. 2)

M (COM-MOT1-MOT2): Motor Connection
LAMP (LAMP-COM): Flashing lamp output
FAN (FAN-COM): Fan output
4.5. J8 CONNECTOR - MOTOR CAPACITOR (FIG. 2)

Rapid connector for connecting the motor thrust capacitor.
4.6. J9 TERMINAL-BOARD - POWER SUPPLY (FIG. 2)

PE : Earth connection
N : Power supply $230 \mathrm{~V} \sim$ or $115 \mathrm{~V} \sim$ (Neutral)
L : Power supply $230 \mathrm{~V} \sim$ or $115 \mathrm{~V} \sim($ Line)

\triangle
For correct operation, the board must be connected to the earthing conductor present in the system. Install, upstream of the system, a differential thermal breaker.

4.7. J3, J5 RAPID CONNECTORS - FOR OPENING AND CLOSING LIMIT-SWITCHES (FIG. 2)

Quick-fit connector for connection of the opening (J3) and closing (J5) limit-switches.
4.8. J6 CONNECTOR - BEAM BREAKING SENSOR (FIG. 2)

Quick-fit connector for connecting the beam breaking sensor (where present). If this sensor is absent, leave the supplied jumper in place.

4.9. DS1 FREQUENCY SELECTOR (FIG. 1)

DIP-SWITCH selector used to set a HIGH or LOW working frequency of the vehicle loop detectors. Consult chapter 5.5 .

4.10. J4 CONNECTOR - FOR MINIDEC, DECODER AND RP

It is used for rapid connection of Minidec, Decoder and RP/ RP2 Receivers.
If you are using an RP2 twin-channel receiver, you will be able to directly command the automated system's OPEN and CLOSE from a twin-channel radio control.
If using a single-channel RP type receiver, only OPEN can be commanded.
Fit the accessory with the component side directed toward the board interior.

Insert and remove the boards ONLY after cutting power.

5. PROGRAMMING

To programme the operation of the automated system, the "PROGRAMMING" mode must be accessed.
Programming is in three parts: 1st LEVEL, 2nd LEVEL and 3rd LEVEL. modification of the programming parameters is immediately effective, whereas definitive memory-storage occurs only on exiting programming and returning to the view of the automated system status. If you cut power to the unit before returning to view the status, all the modifications made will be lost. You can return to viewing the status from any point of programming at any level, by pressing keys F and - simultaneously.

5.1. 1ST LEVEL PROGRAMMING

To access 1 st LEVEL PROGRAMMING, use push-button \mathbf{F} :

- if you press it (and hold it down), the display shows the name of the first function.
- if you release the push-button, the display shows the value of the function, which can be changed with keys + and -.
－if you press F again（and hold it down），the display shows the name of the next function，etc．
－when you reach the last function，press the push－button Fto exit programming，and the display resumes showing the inputs status．

1ST LEVEL PROGRAMMING

Display	Function	Default
$\begin{gathered} \text { ED } \\ \square \\ \square \end{gathered}$	LOADING PARAMETERS：	［1｜］
[1\|	BUS ACCESSORY MENU For an explanation of this parameter refer to page 8 chapter 5．3．	—
1_1	FUNCTION LOGICS：	E
EI	PAUSE TIME： This operates only if an automatic logic was selected．Can be adjusted from \square to 5 g sec．in 1 second steps． Subsequently，the display changes to show minutes and tenths of a second （separated by a dot）and time is adjusted in 10 second steps，up to the maximum value of 4.1 minutes． e．g．if the display shows ㄹ． コ，$_{\text {，the }}$ the pause time will be 2 min and 50 sec ．	[l\|-1
FI_	OPENING MOTOR POWER： Adjusts the thrust of the motor during the opening phase． \square Minimum power 50 Maximum power	EII
FI	CLOSING MOTOR POWER： Adjusts the thrust of the motor during the closing phase． ［1］Minimum power 园 Maximum power	EII
11	LOOP 1： If this function is enabled，the loop connected to the Loopl input will have the OPEN function． $\begin{aligned} & \unlhd=\text { loopl active } \\ & \text { ח口 = loop1 not active } \end{aligned}$ Attention：if the function is not enabled， loopl status will nevertheless be available on one of the outputs，if appropriately set （see second level programming）．	「III

Display	Function	Defau
こ	LOOP 2： If this function is enabled，the loop connected to Loop2 input will have the SAFETY／CLOSE function，i．e．it will operate as SAFETY during the closing stage，and will command CLOSE to the board at release． $\begin{aligned} & y=\text { loop2 active } \\ & m o=100 p 2 \text { not active } \end{aligned}$ Attention：if the function is not enabled， loop2 status will nevertheless be available on one of the outputs，if appropriately set．	ワロー
	BOOST LOOP 1 FUNCTION $\zeta=$ Active $\quad \Pi \square=$ Not active Thanks to this function you can increase the sensitivity level at the moment of detection．When the vehicle leaves the loop，the sensitivity returns to the selected level．This system holds the detection contact even in the event of very high vehicles as well as during the passage of a tractor with trailer．	ーロ
	BOOST LOOP 2 FUNCTION $\zeta=$ Active $\quad \cap \square=$ Not active See BOOST LOOPI function．	「ル
	SENSITIVITY LOOP 1 Regulates the sensitivity of the loop： $\begin{aligned} & 01=\text { minimum } \\ & 10=\text { maximum } \end{aligned}$	
■こ	SENSITIVITY LOOP 2 Regulates the sensitivity of the loop： $\begin{aligned} & 10=\text { minimum } \\ & 10=\text { maximum } \end{aligned}$	
	AUTOMATED SYSTEM STATUS： Exit programming， memory storage of data set and return to automated system status view． Closed Opening pre－flashing Opening Open In pause Closing pre－flashing Closing Stopped ready to close Stopped ready to open Emergency opening Closing safety device in operation	

Example of sequence of states displayed starting from barrier closed：

In the sequence，states OI and 05 are not shown；these correspond to pre－flashing at opening and at closing， respectively．

5．2．MODIFICATION OF THE PRE－SETTING

The modification of the dF parameter enables you to automatically load 7 different configurations modifying all programming values at every level with preset values．
This possibility is a convenient starting point for subsequent rapid＇fine tuning＇of the 624 BLD for functioning with 7 different types of installation．
7 PRE－SETTINGS may be selected：
D 1 Default FAAC for barriers
D己 Default RESERVED FOR FAAC
Default for the FAAC CITY 275 H 600 and H 800 range
Default for FAAC CITY 275 H700 K
Default for J275
Default for J355
Default for J200
To implement loading of the values of one of the 7 pre－settings，select the required pre－setting（ㄴ），ロコ，ロヨ $\square \sqcup, \square 5, ~ О Б, ~ \square 7 ~ a n d ~ e x i t ~ 1 s t ~ l e v e l ~ p r o g r a m m i n g . ~$

EXAMPLE：selecting 1 and exiting 1 st level programming，all the FAAC default values which can be found in the 1st，2nd and 3rd level tables in the＂Default＂column are loaded．The 624 BLD is therefore configured for movement of a barrier．

 the loading of a pre－Setting cancels all the modifications previously made at any PROGRAMMING STEP．IF YOU DO NOT WISH TO load any pre－setting，leave the df step
 －형 AT

The dF，step，unlike the others，does not store the value selected but returns to show DO again，as standard condition．
It is therefore not possible to identify what pre－setting was previously set．

If you do not wish to load any pre－setting，ALWAYS leave the FF step at value and move on to the following programming step．

Ensure that you load the desired default and exit 1st level programming BEFORE modifying other steps，in order to avoid deleting all the modifications made．
To learn more about the specifications of each pre－setting， refer to chapter 10 on page 15.

5．3．SETUP and BUS SYSTEM CONTROL
Each time you install one or more BUS accessories（as explained in chapter 4．3）these must be stored on the board．
Storage is performed as follows：
－enter the first programming level as explained in chapter． 5．1；
－at the bu programming step，release programming push－button \mathbf{F} and press push－button + for 1 second．
The display shows－－for an instant and then returns to the standard condition indicated in fig．10．The storage procedure is finished．
The bu programming step also has the function of displaying the status of the BUS technology accessories．Figure 9 indicates the exact correspondence between the segments of the display and the inputs．

Segment ON＝closed contact
Segment OFF＝open contact
The configuration for correct operation of the automated system should show the three horizontal segments ON as in figure 10.

Fig． 10

In case of engagement of the closure photocells， the upper and lower segments switch off，leaving the central segment on，as in figure 11.

Fig． 11

In case of engagement of the PULSE GENERATOR OPEN pair，the corresponding vertical segment switches on for the engagement time of the pair， as illustrated in figure 12.

Fig． 12

The PULSE GENERATOR OPEN pair of photocells，if engaged， commands opening of the application and prevents its closure until it is released．

－
 If no pair of BUS photocells is present on the system，the buı programming step will still show the display in figure 10.

The BUS communication system uses a self－diagnostic function able to supply reports of incorrect connection or of erroneous configuration of the BUS accessories．

The display shows the EI signal FLASHING when a SHORT－CIRCUIT is present along the BUS line，as in figure 13．Check the connections made（chapter．4．3）．

Fig． 13

The display shows the Er message FLASHING，as in figure 14，if more than one pair of photocells should have the same address．

Fig． 14

In this latter case，check all the addresses set on all the photocells installed，referring to chapter 4．3．

5．4．2nd LEVEL PROGRAMMING

To access 2nd LEVEL PROGRAMMING，press push－button \mathbf{F} and，while holding it down，press push－button＋：
－if you release the＋push－button，the display shows the name of the first function．
－if you also release the \mathbf{F} push－button，the display shows the value of the function，which can be changed with keys＋ and－．
－if you press the \mathbf{F} key（and hold it down），the display shows the name of the next function；if you release it，the value is shown and can be modified with keys + and - ．
－when you reach the last function，press push－button \mathbf{F} to exit programming，and the display resumes showing the inputs status．

2ND LEVEL PROGRAMMING		
Display	Function	De－ fault
ロレロ	MAXIMUM THRUST TORQUE： the motor runs at maximum torque（ignoring torque regulation）at the initial moment of movement． $\begin{aligned} & \boxed{\square}=\text { Active } \\ & \text { ■ロ = Excluded } \end{aligned}$	－
『リー	PRE－FLASHING： it permits activation of the flashing lamp for 5 secs before the start of movement． excluded before each movement at end of pause only ［： before closing	ールー
■！	SLOW CLOSING： for setting the entire closing stage at slow speed． $\begin{aligned} & \text { い = Active } \\ & \text { ■ロ = Excluded } \end{aligned}$	ールー
E－	DECELERATION TIME AFTER LIMIT SWITCHES： for setting the deceleration time（in seconds） after the opening and closing limit switches have operated． Can be adjusted from 0 to 10 sec ．in 1 second steps．	특
L	WORK TIME（time－out）： A value should be set from 5 to 10 seconds longer than the time required for the automated system to move from the closed position to the open position，and vice－versa． Can be adjusted from 10 to 59 sec．in 1 second steps． Subsequently，the display changes to show minutes and tenths of a second（separated by a dot）and time is adjusted in 10 second steps， up to the maximum value of 4.1 minutes．	득
にБ	FAIL SAFE： If this function is activated，itenables a function test of the photocells before any automated system movement，independently of the output used．If the test fails，the automated system does not start the movement． $\begin{aligned} & \text { ■ = Active } \\ & \text { ■ロ = Excluded } \end{aligned}$	ールー

口1	OUTPUT 1： The output can be set to one of the following functions：	［17］
$\square 1$	OUTPUT 1 POLARITY： For configuring the output polarity status． $\begin{aligned} & \text { I = N.C. polarity } \\ & \text { Пロ=N.O. polarity } \end{aligned}$ Note：if the output is set to FAll－SAFE（ OC ） leave the default value ח口．	ール
ロー	OUTPUT 2： See output 1	■三
■に	OUTPUT 2 POLARITY： See output 1 polarity	ール
ロヨ	OUTPUT 3： See output 1	［1
■ヨ	OUTPUT 3 POLARITY： See output 1 polarity	「ロー
\square	OUTPUT 4／BUS： If set at 11 the output is dedicated to accessories with BUS technology．Refer to chapter 4.3 on page 5 for an explanation． This output retains the possibility of configuration of output 1 with the exception of functions 11 ， 1 I which in this case have no effect．	［17］
口1－1	OUTPUT 4 POLARITY： For configuring the output polarity status． $\begin{aligned} & \text { 凹 = N.C. polarity } \\ & \sqcap ロ==\text { N.O. polarity (for BUS) } \end{aligned}$	「ル

曰曰	ASSISTANCE REQUEST（coupled to the next two functions）： If activated at the end of the count－down （settable with the next two functions under ＂Cycle programming＂），it activates LAMP output for 4 sec every 30 sec ．（assistance request）．Can be useful for setting scheduled maintenance． $\begin{aligned} & \text { I }=\text { Active } \\ & \text { ГIロ }=\text { Excluded } \end{aligned}$	ロII				
ワI	CYCLE PROGRAMMING IN THOUSANDS： For setting a count－down of the system operating cycles，settable value from 0 to 99 （thousands of cycles）．The displayed value is reset as the cycles progress，interacting with the חIL value（99 חIL decrementing steps correspond to one ril decrement）． The function can be used combined with $n[$ ， to check the use of the system and to make use of the＂Assistance request＂．	[\|				
TII	CYCLE PROGRAMMING IN HUNDREDS OF THOUSANDS： For setting a count－down of the system operating cycles，settable value from 0 to 99 （hundreds of thousands of cycles）．The displayed value is reset as the cycles progress， interacting with the ar ．（ 1 mc decrement corresponds to 99 пIL decrementing steps）． The function can be used combined with \boldsymbol{n} ， to check the use of the system and to make use of the＂Assistance request＂．	11				
11	HOLD TIME LOOP 1 For setting the presence time on loop 1．At the end of this time the board calibrates itself and indicates＂loop free＂（decimal point of the units OFF）．On switching on the board，an automatic reset is performed． $\begin{aligned} & \text { ப }=5 \text { minutes } \\ & \text { Гוロ }=\text { infinite } \end{aligned}$	ロII				
トIロ	HOLD TIME LOOP 2 For setting the presence time on loop 2．At the end of this time，the board calibrates itself and indicates＂loop free＂（decimal point of the tens OFF）．On switching on the board，an automatic reset is performed． $\begin{aligned} & =5 \text { minutes } \\ & \text { \|alanite } \end{aligned}$	ワII				
二に	AUTOMATED SYSTEM STATUS： Exit programming，memory storage of data and return to gate status display（see paragraph 5．1．）．					

5．5．SETUP FOR INTEGRATED LOOP DETECTOR

The 624 BLD is equipped with an integrated metallic mass detector for induction detection of vehicles．

Features：

－galvanic separation between the electronics of the detector and of the loop
－automatic alignment of the system immediately after activation
－continual resetting of frequency drifts
－sensitivity independent of loop inductivity
－regulation of the working frequency of the loops
－message of loop engaged with LED display
－loop status addressable on the OUT 1，OUT 2，OUT 3 and OUT 4 outputs

Connection：

Connect the loop detectors as indicated in figure 2 on page 4：
－Terminals 1－2 for LOOP 1 ＝loop with opening function；
－Terminals 3－4 for LOOP 2 ＝loop with closing and／or closing safety function．
To learn more about the effect of signals originating from the loops on the automated system，please refer to the logic tables in chapter 12.
To enable the function of the connected loops，enter the 1st programming level and set steps $L \mid$ and $L 己$ in U ．To enable the function of the connected loops，enter the 1st programming level and set steps．
The operating status of the loop detector is shown through the use of decimal points on the display when automated system status is displayed（step 5t．）．

CALIBRATION

Each time the 624 BLD board is powered， the display shows the automated system status and the integrated loop detector calibrates the connected loops．Therefore， perform a calibration，removing power from the 624 BLD for at least 5 seconds．
Calibration is shown on the display through flashing of the two points，as in figure 15.

Fig． 15

If one or both the magnetic loops are not installed， the loop detector is continually calibrated without this creating problems to the functioning of the board．Therefore，during display of the automated system status，one or both the decimal points will flash constantly．

Once calibration has taken place，the decimal points indicate the loop status：

Point ON＝Loop ENGAGED
Point OFF \quad Loop DISENGAGED
Point FLASHING＝Loop NOT CONNECTED or BEING CALIBRATED

REGULATION OF SENSITIVITY

Regulating the sensitivity determines the variation of the inductivity，for each channel，which a vehicle must cause to activate the relative output of the detector．
Regulation of sensitivity is performed separately for each channel with the aid of the two 51 and 52 parameters at the 1 st programming level．You can also activate the BOOST function for both detectors．Consult chapter 5．1．

REGULATION OF HOLD TIME

The retaining time count starts on engagement of the loop． If，on expiry of this time，the loop is still engaged，a new calibration is performed automatically where the presence of the metallic mass on the loop no longer causes its engagement．At the end of the new calibration，the loop is considered＂disengaged＂．
The retaining time can be regulated with the aid of the two hland her parameters at the 2nd programming level．

Consult chapter 5.4

FREQUENCY REGULATION and NEW BALANCING

The working frequency of each of the detector channels can be regulated at two levels with the aid of the DS1 DIP- switch (see fig.1).

DIP 1	ON = Loop 1 frequency LOW	
		OFF = LOop 1 frequency HIGH
	DIP 2	ON = Loop 2 frequency LOW
		OFF = Loop 2 frequency HIGH

On changing one of these DIPs, it is recommended that a new calibration be performed. In case of installation of two loops, select different frequencies for each loop.

NOTES FOR CONSTRUCTION OF THE LOOPS

The loop must be located at least 15 cm . from fixed metal objects, at least 50 cm . from moving metal objects and not more than 5 cm . from the road surface.
Use a normal single-core cable with a section of $1.5 \mathrm{~mm}^{2}$ (if the cable is buried directly, it must be double insulated). Construct a loop, preferably square or rectangular, preparing a PVC cable duct or making a track in the flooring as indicated in figure 16 (the angles must be cut at 45° to avoid cable breakage). Place the cable, performing the number of windings indicated in the table. The two ends of the cable must be intertwined (at least 20 times per metre) from the loop to the detector. Avoid any cable splicing (if it should be necessary, solder the wires and seal the junction with a thermo-shrinking

Fig. 16

6. START-UP

6.1. BOARD LEDS CHECK

sheath) and keep it separate from power supply lines. Before the definitive start-up of the 624 BLD unit, control the activation status of the LEDs present.
These LEDs indicate the status of the board inputs and have particular importance for the handling of the automated system:

	LED ON	0	: CLOSED contact
LED OFF		: OPEN contact	

Figure 16 shows the configuration of the standard LEDs with the automated system CLOSED ready to open.

The Emergency inputs (DL5), STOP (DL4), Photocells (DL3) and Pivot (DL8) are safety inputs with N.C. (normally closed) contacts, therefore the corresponding LEDs are ON.

Fig. 16

The FCA and FCC LEDs are the N.C contacts of the limit switches which, if engaged, become open, consequently switching off the corresponding LED:

With Automated system CLOSED	FCA - DL6 \square fCC - dL7 FCC ENGAGED
With Automated system OPEN	$\begin{aligned} & \text { FCA - DL6 FCA ENGAGED } \\ & \text { FCC - DL7 } \end{aligned}$

6.2. CHECK ON BUS STATUS

Consult this paragraph if BUS photocells have been

 installed, as indicated in paragraph 4.3 on page 5.Enter 1 st programming level and show the but programming step on the display.
This step must show three horizontal lines, confirming that all pairs of BUS photocells are not engaged.
Refer to paragraph 5.3 on page 8 for further details on displaying these devices.

7. AUTOMATED SYSTEM TEST

When you have finished programming, check if the system is operating correctly.
Check in particular if power of the automated system is adequately adjusted and if the safety devices connected to it operate correctly.

8. MASTER-SLAVE CONFIGURATIONS

If installation contemplates the use of two opposing barriers to be activated at the same time on opening/ closing, one of the connection diagrams shown below should be used, depending on the control boards used to move the barriers.
By MASTER equipment is meant the control board to which all the pulse generators and safety devices are connected. By SLAVE equipment is meant the control board which is controlled by the MASTER through pulse inputs, while the safety inputs are short-circuited.

624 MPS MASTER

624 BLD SLAVE

 129．3rd LEVEL PROGRAMMING
The 3rd level programming is only used in the case of advanced customisation of the function logics already present in the memory．

Before making changes at this level，be sure you fully understand the nature of the steps you wish to modify and their effect on the automated system．
To access 3rd LEVEL PROGRAMMING，press push－button F and，while holding it down，press push－button＋for about 10 seconds．Use of the $\mathbf{F},+$ and－keys is the same as for the other two programming levels．

To enable 3rd level programming see par． 9.1

3rd LEVEL PROGRAMMING（F）＋＋		
D．	Function	Setting
$\square 1$	If you enable this function，automatic closure occurs after pause time．	ப＝automatic closure no＝disables
－1］	If you enable this function，operation is with two different inputs：OPEN for opening and CLOSE for closing．	ப＝operation on two inputs no＝disables
극	Activation of recognition of the levels of the OPEN and CLOSE inputs（command maintained）．That is to say，the board recognises the level（for example，with OPEN maintained and STOP pressed，on release of the latter the automated system continues to open）．If $0 \exists$ is disabled，the board commands a manoeuvre only if the input is varied．	$\zeta=$ recognition of level $\mathrm{no}=$ recognition of the change in status
［14	Activation of DEAD MAN opening（command kept pressed）．If the OPEN command is released，operation is stopped．	$\begin{aligned} & \mathrm{Y}=\text { enables } \\ & \mathrm{no}=\text { disables } \end{aligned}$
「15	If you enable this function，an OPEN command during opening stops the movement． If parameter 06 is no the system is ready for opening． If parameter 0 D is the system is ready for closing．	$\zeta=$ at opening stops movement no＝disables
同	If you enable this function，an OPEN command during opening reverses movement． If parameters 05 and 06 are no OPEN has no effect during opening．	ப＝at opening reverses no＝disables
$\bigcirc 7$	If you enable this function，an OPEN command during the pause stops operation． If parameters 17 and 08 are no OPEN recharges pause time．	$\sqcup=$ in pause stops movement no＝disables
［17	If you enable this function，an OPEN command during the pause causes closure． If parameters QT and 08 are no I＇OPEN recharges pause time．	$\begin{aligned} & \hline y=\text { in pause closes } \\ & m \text { = disables } \end{aligned}$
\bigcirc	If you enable this function，an OPEN command during closure，stops operation，otherwise it reverses movement．	$\begin{aligned} & \breve{\zeta}=\text { stops } \\ & \mathrm{no}=\text { reverses } \end{aligned}$
17	DEAD MAN closing enabled（command kept pressed）．If you release the CLOSE command， operation is stopped．	$\begin{aligned} & \mathrm{y}=\text { enables } \\ & \mathrm{no}=\text { disables } \end{aligned}$
11	If you enable this function，a CLOSE command has priority over OPEN，otherwise OPEN has priority over CLOSE．	$\begin{aligned} & \text { צ = enables } \\ & \mathrm{no}=\text { disables } \end{aligned}$
回	If you enable this function，a CLOSE Command commands closure when it is released． Until CLOSE is enabled，the unit remains in closure pre－flashing．	$\begin{aligned} & \mathrm{Y}=\text { closes when released } \\ & \mathrm{mo}=\text { closes at once } \end{aligned}$
ほ	If you enable this function，a CLOSE command during opening stops operation，otherwise the CLOSE command commands reversing immediately or at end of opening（also see parameter I^{4} ）	ப＝CLOSE stops movement no＝CLOSE reverses
14	If you enable this function，and if parameter $\exists \exists$ is no，the CLOSE command commands immediate closure at end of opening cycle（memory stores CLOSE）．If parameters $1 \exists$ and IT are no CLOSE commands immediate closure．	$y=$ closes at the end of opening no＝immediate closure
15	If you enable this function，when the system is stopped by a STOP，a subsequent OPEN command moves in the opposite direction．If parameter 15 is no \dagger always closes．	$\begin{aligned} & \zeta=\text { moves in the opposite } \\ & \text { direction } \\ & \mathrm{no}=\text { always closes } \end{aligned}$
汇	If you enable this function，during closing，the CLOSING SAFETY DEVICES stop movement and allow resumption of movement when disengaged，otherwise they immediately rever－ se at opening．	$\zeta=$ closes at disengagement no＝immediate reversing
17	If you enable this function，the CLOSING SAFETY DEVICES command closure when disengaged （also see parameter II）．	$\begin{aligned} & \mathrm{Y}=\text { closure when FSW } \\ & \text { disengaged } \\ & \mathrm{no}=\text { disables } \end{aligned}$
19	If you enable this function，and if parameter 17 is ζ ，the unit waits for the opening cycle to end before executing the closing command supplied by the CLOSING SAFETY DEVICES．	$\begin{aligned} & Y=\text { closes at the end of } \\ & \text { opening } \\ & \text { no }=\text { disables } \end{aligned}$
19	If you enable this function，during closing，LOOP2 stops movement and allows it to resume at disengagement，otherwise it immediately reverses at opening．	ப＝closure at disengagement $\mathrm{no}=$ immediate reversing
－1］	If you enable this function，LOOP2 commands closing when it disengages（also see parameter 리）．	$\begin{aligned} & \mathrm{Y}=\text { closes if LOOP2 is free } \\ & \mathrm{mo}=\text { disables } \end{aligned}$
こ1	If you enable this function，and if parameter 20 is $Ц$ ，the unit waits for the opening cycle to end before executing the closing command supplied by LOOP2．	ப＝closes at the end of opening no＝disables
ココ	If you enable this function，LOOP1 commands have priority over LOOP2 commands．	$\begin{aligned} & \breve{Y}=\text { enables } \\ & \mathrm{no}=\text { disables } \end{aligned}$

D．	Function	Setting
こコ	LOOP 1 commands opening and，at end of opening，closes if released（useful if a vehicle reverses with consecutive loops）．If disabled at disengagement of LOOP 1，no closure is performed．	$\begin{aligned} & \breve{L}=\text { closes if LOOP1 is free } \\ & \mathrm{mo}=\text { disables } \end{aligned}$
2－1	NOT USED	1
ごコ	A．D．M．A．P function If you enable this function，the safety devices operate according to French standards．	$\begin{aligned} & y=\text { enables } \\ & n o=\text { disables } \end{aligned}$
26	If you enable this function，during closure，the CLOSING SAFETY DEVICES stop movement and，when disengaged，reverse movement，otherwise they reverse immediately．	$\begin{aligned} & y=\begin{array}{c} \text { stops movement } \\ \text { dind reverseses. when } \\ \text { disengaged } \end{array} \\ & n 0=\text { reverses immediately. } \end{aligned}$
こ7	NO EFFECT	1
Al	PRELAMPEGGIO： Used for adjusting－in 1 sec steps－the duration of required pre－flashing，from a minimum of \square to a maximum of $1 \square$ seconds	15
FII	TIMEOUT FOR REVERSING AT CLOSURE： If you enable this function，during closing，you can decide whether to reverse or stop the movement when time out elapses（closing stroke limit not reached）．	$\begin{aligned} & \mathrm{y}=\text { reversal } \\ & \mathrm{no}=\text { block } \end{aligned}$
R3	OPENING AT POWER UP： In case of a power cut，when power is restored，an opening operation can be commanded by enabling this function（only if the automated system is not closed，FCC free）．	$\begin{aligned} & 4=\text { opening } \\ & \text { no }=\text { stays idle } \end{aligned}$
FH－	TIME FOR ENABLING FAAC CITY PRESSURE SWITCH（J5）： This is the time after which the unit considers the signal originating from the pressure switch as the CLOSING TRAVEL－LIMIT． Can be adjusted from 1 to 59 sec．in 1 second steps．Subsequently，the display changes to show minutes and tenths of a second（separated by a dot），up to a maximum value of 4.1 minutes．	4.0
F5	DISABLING OF BOLLARD PRESSURE SWITCH AT START OF MOVEMENT： For a correct operation of the bollard，you have to disable the pressure switch check at start of the upstroke movement（time： 0.4 seconds）． Set this function to 4 with bollards．	$\zeta=$ pressure switch not active at thrust no＝pressure switch always active
FIG	BOLLARD SOLENOID VALVE POWER SUPPLY CHECK（terminals 22－23）： FAAC CITY K－J355：solenoid valve output usually not supplied with power－supplied with power during downstroke． FAAC CITY－J275 standard－J200：standard：solenoid valve output usually supplied with power－not supplied with power during downstroke．	$\begin{aligned} & 4=\text { for FAAC CITY K / J355 } \\ & \text { no for FAAC CITY/ J275 } \\ & \text { standard and J200 } \end{aligned}$
F7	POLARITY OF OPENING TRAVEL－LIMIT STOP： Configuration of the travel－limit stop contact	$\begin{aligned} & Y=\text { NO polarity } \\ & \text { no }=\text { NC polarity } \end{aligned}$
FIB	POLARITY OF CLOSING TRAVEL－LIMIT STOP： Configuration of the travel－limit stop contact	$\begin{aligned} & y=\text { NO polarity } \\ & m o=\text { NC polarity } \end{aligned}$
FI	FAAC CITY PRESSURE SWITCH ENABLE（J5）： Detection of the PRESSURE SWITCH contact as safety device during the first upstroke phase and as limit switch after activation time of FAAC CIIY pressure switch（parameter Al^{4} ）：	$\zeta=$ Operation for FAAC CITY no $=$ Standard limit switch operation
10	SAFETY ONLY PRESSURE SWICH FOR BOLLARDS（temminals 7 －GND）： Recognition of PHOTOCELL contact as a safety PRESSURE SWICH． （The contact is ignored at start of movement and at the end of the upstroke）	ப＝Operation of safety only pressure switch $\mathrm{no}=$ Operation of standard photocells
bl	HOLD CLOSE／HOLD OPEN FUNCTION DELAY： Delay of the activation of the HOLD CLOSE／HOLD OPEN function（see parameters b3 and b4）．The count starts when the involved limit switch has been reached． If，at the end of the set time，the limit switch is involuntarily disengaged，the HOLD CLOSE／ HOLD OPEN function is activated． OD＝HOLD CLOSE／HOLD OPEN function activated immediately 01 to 99 ＝minutes of count before activation of HOLD CLOSE／HOLD OPEN	310
ロこ	DO NOT MODIFY	310
ロコ	HOLD CLOSE FUNCTION： If the closing limit switch is involuntarily disengaged，the board commands automatically a movement for 2 sec．to restore the position，it the closing limit switch is not engaged during this period of time，the automated system is activated max．for the operating time＂t＂see 2nd PROGRAMMING LEVEL	$\begin{aligned} & \sqcup=\text { enables } \\ & \mathrm{no}=\text { disables } \end{aligned}$
$\square 4$	HOLD OPEN FUNCTION： If the opening limit switch is involuntarily disengaged，the board comman－ ds automatically a movement for 2 sec ．to resfore the position；if the ope－ $\begin{aligned} & \text { ning limit switch is not engaged during this period of time，the automated sy－} \\ & \text { stem is activated max．for the operating time }\end{aligned}+{ }^{\prime \prime}$ see 2nd PROGRAMMING LEVEL： 	$\begin{aligned} & \mathrm{Y}=\text { enables } \\ & \mathrm{no}=\text { disables } \end{aligned}$

D．	Function	Setting
■ ■	CONTROL OF BOLLARDS SOLENOID VALVE： Function to be set to $ل$ for J275／J355／J200 Function to be set to no for FAAC CITY／FAAC CITY K．	$\begin{aligned} & \zeta=\text { for } \mathrm{J} 275 / J 355 / J 200 \\ & \mathrm{ma}=\text { FAAC CITY / FAAC CITY K } \end{aligned}$
ロ	EMERGENCY INPUT OPERATING LOGIC： If you activate this function，the emergency input commands a closure，which is kept until the contact is restored． If the function is not active，the emergency input commands an opening，which is kept until the contact is restored．	$\begin{aligned} & \zeta=\text { active } \\ & \mathrm{mo}=\text { not active } \end{aligned}$
らに	AUTOMATED SYSTEM STATUS： Exit programming，memory storage of data and return to gate status display（see par．5．1．）．	

9．1．CUSTOMISATION OF FUNCTION LOGIC

The 3rd programming level values vary depending on the logic selected at the first programming level．

The 3rd programming level is dedicated to customisation of one of the logics selectable if non－standard behaviour of application should be needed．

Procedure for implementing the modification of one or more 3rd programming level parameters which customise the function of the logic set：
1．Select one of the basic logics most suitable for your requirements．
2．Enter the 3rd programming level and modify the required parameters．
3．Exit the 3rd programming level and select logic［u．
The［ulogic activates the modifications made at the 3rd level．

The following table contains the default parameters affecting the function logics．

Step	A	A1	E	P	PA	Cn	CA	rb	C
01	Y	Y	N	N	Y	N	Y	Y	N
02	N	N	N	Y	Y	Y	Y	Y	Y
03	N	N	N	N	N	N	N	Y	N
04	N	N	N	N	N	N	N	N	Y
05	N	N	Y	N	N	N	N	N	N
06	N	N	Y	N	N	N	N	N	N
07	N	N	N	N	N	N	N	N	N
08	N	N	N	N	N	N	N	N	N
09	N	N	N	N	N	N	N	N	N
10	N	N	N	N	N	N	N	N	Y
11	N	N	N	N	N	N	N	N	N
12	N	N	N	Y	Y	N	N	N	N
13	N	N	N	N	N	N	N	N	N
14	N	N	N	Y	Y	Y	Y	N	N
15	N	N	N	N	N	N	N	N	N
16	N	N	N	Y	Y	N	N	N	N
17	N	Y	N	N	N	N	N	N	N
18	N	Y	N	N	N	N	N	N	N
19	N	N	N	Y	Y	N	N	N	N
20	N	Y	N	Y	Y	Y	Y	N	N
21	N	Y	N	Y	Y	Y	Y	N	N
ここ	N	N	N	N	N	Y	Y	N	N
2ヨ	N	N	N	Y	Y	N	N	N	N
24	N	N	N	N	N	N	N	N	N
25	N	N	N	N	N	N	N	N	N
26	N	N	N	N	N	N	N	N	N

10．PRE－SETTING VALUES

The table below shows the values of the steps at each programming level in relation to the pre－setting chosen

| 1 st LEVEL | $\begin{array}{c}\text { Default } \\ \text { FAAC1 }\end{array}$ | $\begin{array}{c}\text { RESER－} \\ \text { VED } \\ \text { FOR } \\ \text { FAAC }\end{array}$ | $\begin{array}{c}\text { Default } \\ \text { FAAC } \\ \text { CITY }\end{array}$ | $\begin{array}{l}\text { Default } \\ \text { FAAC } \\ \text { CITY K }\end{array}$ | $\begin{array}{c}\text { Default } \\ \text { J275 }\end{array}$ | Default |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| J355 | | | | | | |$)$

2nd LEVEL	Default FAACl	$\begin{array}{\|c\|} \hline \text { RESER- } \\ \text { VED } \\ \text { FOR } \\ \text { FAAC } \\ \hline \end{array}$	$\begin{gathered} \text { Default } \\ \text { FAAC } \\ \text { CTIY } \\ \hline \end{gathered}$	$\begin{array}{r} \text { Default } \\ \text { FAAC } \\ \text { CITY K } \\ \hline \end{array}$	$\left\|\begin{array}{c} \text { Default } \\ \text { J275 } \end{array}\right\|$	$\underset{\substack{\text { Default } \\ \mathrm{J} 355 \\ \hline}}{ }$	$\dagger \begin{gathered} \text { Default } \\ \mathrm{J} 200 \end{gathered}$
bo boost	$Ч$	$Ч$	$Ч$	$Ч$	$Ч$	4	4
PF pre－flashing	по	CL	חo	חo	חo	חo	no
5［．slow closing	no						
tr slow－down	$0 \exists$	03	01	01	01	01	01
t time out	20	20	12	12	12	12	12
F5 fail safe	no						
－ 1 output 1	00	16	15	15	15	15	15
P I polarity 1	no	no	no	no	no	חo	no
－2 output 2	03	17	14	14	03	03	03
PP polarity 2	по	חo	no	no	חo	ח口	no
$\bigcirc 3$ output 3	01	01	01	01	02	02	02
PЭ polarity 3	no	no	no	no	חo	חo	no
－4 ${ }^{\text {d }}$ output 4	00	00	00	00	00	00	00
PY polarity 4	no	no	no	no	חo	חo	no
F5 assistance	no						
nac cycles 1.	00	00	00	00	00	00	00
n［．cycles 2.	01	01	01	01	01	01	01
h I hold	no						
he hold	no						

3rd LEVEL	Default FAAC1		$\begin{array}{\|c\|} \hline \text { Default } \\ \text { FAAC } \\ \text { CITY } \\ \hline \end{array}$	Default FAAC CITY K	$\left\lvert\, \begin{gathered} \text { Default } \\ \text { J275 } \end{gathered}\right.$	$\left\|\begin{array}{c} \text { Default } \\ \text { J355 } \end{array}\right\|$	$\left\|\begin{array}{c} \text { Default } \\ \text { J200 } \end{array}\right\|$
01	no	〕	$Ч$	ζ	$Ч$	$Ч$	4
ロอ	no	no	$Ч$	$Ч$	$Ч$	$Ч$	4
03	no	no	$Ч$	Ч	צ	Ч	$Ч$
04	no						
05	$Ч$	no	no	no	no	no	no
06	$Ч$	no	no	no	no	no	no
07	no						
08	חо	ח口	ח口	ח口	no	no	no
09	ח口	ח口	חo	ח口	no	no	no
10	no	ח口	no	no	no	no	no
11	no	ח口	חo	ח口	no	no	no
12	по	חo	חо	no	no	no	no
13	no	no	no	no	no	ח口	no
14	no						
15	חo	ח口	חо	ח口	חo	no	no
16	no	no	no	חо	no	ח口	no
17	no	$〕$	no	no	no	no	no
18	no	$Ч$	no	no	no	no	no
19	no	no	no	no	no	חo	no
20	no	$Ч$	חo	no	no	no	no
21	חo	〕	חо	ח口	no	no	no
2อ	no						
2ق	no						
2－1	no	no	no	no	חo	no	no
25	no						
26	no						
27	no	no	no	no	חo	חo	no
Al	05	01	05	05	05	05	05
A2	ח口	ח口	no	no	no	no	no
A3	no						
74	4.0	4.0	04	04	4.0	4.0	05
F5	חо	ח口	$Ч$	\bigcirc	\bigcirc	\bigcirc	4
AG	no	no	no	\bigcirc	no	\bigcirc	no
A7	no	no	\bigcirc	\bigcirc	no	no	no
AB	no	no	no	\bigcirc	no	ח口	no
A9	no	no	$Ч$	\bigcirc	no	no	no
60	no	no	no	no	$Ч$	〕	3
bl	00	00	05	05	05	05	05
be	30	30	30	30	30	30	30
เ．	no	no	$Ч$	\bigcirc	$Ч$	$Ч$	4
－4	no						
－5	no	no	no	no	\bigcirc	\bigcirc	$Ч$
b6	ח0	no	no	no	no	no	no

11．NOTES

12．INTERLOCK CONNECTION

The interlock function controls two in－line barriers（see fig． so that the opening of a barrier is interlocked with the closure of the other barrier．
The operation can be one－way or bidirectional

For in－line barriers，enable OUT1 INTERLOCK on parameter 18 （see 2nd PROGRAMMING LEVEL）on both boards and connect them as shown in fig． 18
13. FUNCTION LOGIC TABLES

Tab. 1/a

LOGIC "A"	PULSES					
AUTOMATED SYSTEM STATUS	OPEN A	CLOSE	STOP	FSW	LOOP 1	LOOP 2
CLOSED	opens and re-closes after pause time	no effect	no effect (opening disabled)	no effect	opens and re-closes after pause time	no effect
OPENING	no effect	reverses immediately at closing	stops operation	no effect	no effect	no effect
OPEN IN PAUSE	recharges pause time	closes	stops operation	recharges pause time (closing disabled)	recharges pause time	recharges pause time (closing disabled))
CLOSING	reverses immediately at opening	no effect	stops operation	reverses immediately at opening	reverses immediately at opening	reverses immediately at opening
STOPPED	closes	closes	no effect (opening and closing disabled)	no effect (closing disabled)	opens and re-closes after pause time	no effect (closing disabled)

Tab. 1/b

LOGIC "Al"	PULSES					
AUTOMATED SYSTEM STATUS	OPEN A	CLOSE	STOP	FSW	LOOP 1	LOOP 2
CLOSED	opens and re-closes after pause time	no effect	no effect (opening disabled)	no effect	opens and re-closes after pause time	no effect
OPENING	no effect	reverses immediately at closing	stops operation	closes immediately at end of opening	no effect	closes immediately at end of opening
OPEN IN PAUSE	recharges pause time	closes	stops operation	closes	recharges pause time	closes
CLOSING	reverses immediately at opening	no effect	stops operation	reverses immediately at opening	reverses immediately at opening, closes at pause end	reverses immediately at opening, re-closes when opening finished
STOPPED	closes	closes	no effect (opening and closing disabled)	no effect (closing disabled)	opens and re-closes after pause time	no effect (closing disabled)

Tab. 1/c

LOGIC "E"	PULSES					
AUTOMATED SYSTEM STATUS	OPEN A	CLOSE	sTOP	FSW	LOOP 1	LOOP 2
CLOSED	opens	no effect	no effect (opening disabled)	no effect	opens	no effect
OPENING	stops operation	reverses immediately at closing	stops operation	no effect	no effect	no effect
OPEN	closes	closes	no effect (closing disabled)	no effect (closing disabled)	closes	no effect (closing disabled)
CLOSING	reverses immediately at opening	no effect	stops operation	reverses immediately at opening	reverses immediately at opening	reverses immediately at opening
STOPPED	closes	closes	no effect (opening and closing disabled)	no effect (closing disabled)	no effect (closing disabled)	

- In brackets the effects on the other active pulse inputs

FAAC
Tab. 1/d

LOGIC "P"	PULSES					
AUTOMATED SYSTEM STATUS	OPEN A	CLOSE	STOP	FSW	LOOP 1	LOOP 2
CLOSED	opens	no effect	no effect (opening disabled)	no effect	opens and at end of opening closes if disengaged	no effect
OPENING	no effect	closes immediately at end of opening	stops operation	no effect	no effect	closes immediately at end of opening
OPEN	no effect (closing disabled)	closes	$\begin{aligned} & \text { no effect } \\ & \text { (closing } \\ & \text { disabled) } \end{aligned}$	$\begin{aligned} & \text { no effect } \\ & \text { (closing } \\ & \text { disabled) } \end{aligned}$	prevents closure	closes
CLOSING	reverses immediately at opening	no effect	stops operation	stops and continues to close on release	reverses immediately at opening and closes at end of opening if disengaged	stops and continues to close on release
STOPPED	opens	closes	no effect (opening and closing disabled)	$\begin{aligned} & \text { no effect } \\ & \text { (Closing } \\ & \text { disabled) } \end{aligned}$	opens and at end of opening closes if disengaged	$\begin{aligned} & \text { no effect } \\ & \text { (closing } \\ & \text { disabled) } \end{aligned}$

Tab. 1/e

LOGIC "PA"	PULSES					
AUTOMATED SYSTEM STATUS	OPEN A	CLOSE	STOP	FSW	LOOP 1	LOOP 2
CLOSED	opens and re-closes after pause time	no effect	no effect (opening disabled)	no effect	opens and at end of opening closes if disengaged	no effect
OPENING	no effect	closes immediately at end of opening	stops operation	no effect	no effect	closes immediately at end of opening
OPEN IN PAUSE	recharges pause time	closes	stops operation	recharges pause time (closing disabled)	recharges pause time	closes
CLOSING	$\begin{aligned} & \text { reverses } \\ & \text { immediately at } \\ & \text { opening } \end{aligned}$	no effect	stops operation	stops and continues to close on release	reverses immediately at opening and closes at end of opening if disengaged	stops and continues to close on release
STOPPED	opens and re-closes after pause time	closes	no effect (opening and closing disabled)	no effect (closing disabled)	opens and at end of opening closes if disengaged	no effect (closing disabled)

Tab. 1/f

LOGIC "Cn"	PULSES					
AUTOMATED SYSTEM STATUS	OPEN A	CLOSE	sTOP	FSW	LOOP 1	LOOP 2
CLOSED	opens	no effect	no effect (opening disabled)	no effect	opens	no effect
OPENING	no effect	closes immediately at end of opening	stops operation	no effect	no effect	closes immediately at end of opening
OPEN	no effect (closing disabled)	closes	no effect (closing disabled)	no effect (closing disabled)	no effect	closes
CLOSING	reverses immediately at opening	no effect	reverses at stops operation closes and pause timer	reverses immediately at opening	reverses immediately at opening	
STOPPED	closes	no effect opens (opening and closing disabled)	no effect (closing disabled)	opens	no effect (closing disabled)	

- In brackets the effects on the other active pulse inputs

Tab. $1 / \mathrm{g}$

LOGIC "CA"	PULSES AUTOMATED SYSTEM STATUS				OPEN A	CLOSE

Tab. 1/h

LOGIC "rb"	PULSES					
AUTOMATED SYSTEM STATUS	OPEN A	CLOSE	STOP	FSW	LOOP 1	LOOP 2
CLOSED	opens and re-closes after pause time	no effect	no effect (opening disabled)	no effect	opens and re-closes after pause time	no effect
OPENING	no effect	reverses immediately at closing	stops operation	no effect	no effect	no effect
OPEN IN PAUSE	recharges pause time	closes	stops operation	recharges pause time (closing disabled)	recharges pause time	recharges pause time (closing disabled)
CLOSING	reverses immediately at opening	no effect	stops operation	reverses immediately at opening	reverses immediately at opening	reverses immediately at opening
STOPPED	opens and re-closes after pause time	closes	no effect (opening and closing disabled)	no effect (closing disabled)	opens and re-closes after pause time	no effect (closing disabled)

Tab. 1/i

LOGIC "C"	MAINTAINED COMMANDS		PULSES			
AUTOMATED SYSTEM STATUS	OPEN A	CLOSE	sTOP	FSW	LOOP 1	LOOP 2
CLOSED	opens	no effect	no effect (opening disabled)	no effect	no effect	no effect
OPENING	$/$	no effect	stops operation	no effect	no effect	no effect
OPEN	no effect (closing disabled)	closes	stops operation	no effect	no effect (closing disabled)	no effect (closing disabled)
CLOSING	reverses immediately at opening	$/$	stops operation	Stops operation	stops operation	stops operation
STOPPED	closes	no effect (opening and closing disabled)	no effect (closing disabled)	no effect (closing disabled)	no effect (closing disabled)	

- In brackets the effects on the other active pulse inputs

SEDE - HEADQUARTERS

FAAC S.p.A.

Via Calari, 10
40069 Zola Predosa (BO) - ITALY
Tel. +39 05161724 -Fax +39 051758518
www.faac.it - www.faacgroup.com

ASSISTENZA IN ITALIA

SEDE
tel. +39 0516172501
www.faac.it/ita/assistenza

FIRENZE

tel. +39 055301194
filiale.firenze@faacgroup.com

MILANO
tel +39 0266011163
filiale.milano@faacgroup.com

PADOVA

tel +39 0498700541
filiale.padova@faacgroup.com

ROMA

tel +39 0641206137
filiale.roma@faacgroup.com

TORINO

tel +39 0116813997
filiale.torino@faacgroup.com

SUBSIDIARIES

AUSTRIA

FAAC GMBH
Salzburg - Austria
tel. +436628533950
www.faac.at
FAAC TUBULAR MOTORS
tel. +49 3056796645
faactm.info@faacgroup.com
www.faac.at

AUSTRALIA

FAAC AUSTRALIA PTY LTD
Homebush, Sydney - Australia
tel. +61 287565644
www.faac.com.au

BENELUX

FAAC BENELUX NVISA
Brugge - Belgium
tel. +32 50320202
www.faacbenelux.com
FAAC TUBULAR MOTORS
tel. +31475406014
faactm.info@faacgroup.com
www.faacbenelux.com

CHINA

FAAC SHANGHAI
Shanghai - China
tel. +862168182970
www.faacgroup.cn

FRANCE

FAAC FRANCE
Saint Priest, Lyon - France
tel. +33 472218700
www.faac.fr
FAAC FRANCE - AGENCE PARIS
Massy, Paris - France
tel. +33 169191620
www.faac.fr
FAAC FRANCE - DEPARTEMENT VOLETS
Saint Denis de Pile - Bordeaux - France tel. +33 557551890
www.faac.fr

GERMANY

FAAC GMBH
Freilassing - Germany
tel. +49 865449810
www.faac.de
FAAC TUBULAR MOTORS
tel. +49 3056796645
faactm.info@faacgroup.com www.faac.de

INDIA

FAAC INDIA PVT. LTD
Noida, Delhi - India
tel. +91 120 3934100/4199
www.faacindia.com

IRELAND

NATIONAL AUTOMATION LIMITED
Boyle,Co. Roscommon - Ireland
tel. +3530719663893
www.faac.ie

MIDDLE EAST

FAAC MIDDLE EAST FZE
Dubai Silicon Oasis free zone
tel. +97143724187
www.faac.ae

NORDIC REGIONS

FAAC NORDIC AB
Perstorp - Sweden
tel. +46435779500
www.faac.se

POLAND

FAAC POLSKA SP.ZO.O
Warszawa - Poland
tel. +48 228141422
www.faac.pl

RUSSIA

FAAC RUSSIA LLC
Moscow - Russia
tel. +7 4956462429
www.faac.ru

SPAIN

CLEM, S.A.U.
S. S. de los Reyes, Madrid - Spain
tel. +34 0913581110
www.faac.es

SWITZERLAND

FAAC AG

Altdorf - Switzerland
tel. +41418713440
www.faac.ch

TURKEY

FAAC OTOMATIK GEÇiS SISTEMLERI SAN. VE TiC. LTD. ŞTi.
Çağlayan, Kağıthane, İstanbul - Turkey tel.+90 (0)212-3431311
www.faac.com.tr

UNITED KINGDOM

FAAC UK LTD.

Basingstoke, Hampshire - UK
tel. +441256318100
www.faac.co.uk

U.S.A.

FAAC INTERNATIONAL INC Rockledge, Florida - U.S.A.
tel. +1 9044488952
www.faacusa.com
FAAC INTERNATIONAL INC
Fullerton, California - U.S.A.
tel. +17144469800
www.faacusa.com

